Return to search

EVALUATION OF STATISTICAL METHODS FOR MODELING HISTORICAL RESOURCE PRODUCTION AND FORECASTING

This master’s thesis project consists of two parts. Part I of the project compares modeling of historical resource production and forecasting of future production trends using the logit/probit transform advocated by Rutledge (2011) with conventional Hubbert curve fitting, using global coal production as a case study. The conventional Hubbert/Gaussian method fits a curve to historical production data whereas a logit/probit transform uses a linear fit to a subset of transformed production data. Within the errors and limitations inherent in this type of statistical modeling, these methods provide comparable results. That is, despite that apparent goodness-of-fit achievable using the Logit/Probit methodology, neither approach provides a significant advantage over the other in either explaining the observed data or in making future projections. For mature production regions, those that have already substantially passed peak production, results obtained by either method are closely comparable and reasonable, and estimates of ultimately recoverable resources obtained by either method are consistent with geologically estimated reserves. In contrast, for immature regions, estimates of ultimately recoverable resources generated by either of these alternative methods are unstable and thus, need to be used with caution. Although the logit/probit transform generates high quality-of-fit correspondence with historical production data, this approach provides no new information compared to conventional Gaussian or Hubbert-type models and may have the effect of masking the noise and/or instability in the data and the derived fits. In particular, production forecasts for immature or marginally mature production systems based on either method need to be regarded with considerable caution. Part II of the project investigates the utility of a novel alternative method for multicyclic Hubbert modeling tentatively termed “cycle-jumping” wherein overlap of multiple cycles is limited. The model is designed in a way that each cycle is described by the same three parameters as conventional multicyclic Hubbert model and every two cycles are connected with a transition width. Transition width indicates the shift from one cycle to the next and is described as weighted coaddition of neighboring two cycles. It is determined by three parameters: transition year, transition width, and γ parameter for weighting. The cycle-jumping method provides superior model compared to the conventional multicyclic Hubbert model and reflects historical production behavior more reasonably and practically, by better modeling of the effects of technological transitions and socioeconomic factors that affect historical resource production behavior by explicitly considering the form of the transitions between production cycles.

Identiferoai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:theses-3206
Date01 August 2017
CreatorsNanzad, Bolorchimeg
PublisherOpenSIUC
Source SetsSouthern Illinois University Carbondale
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses

Page generated in 0.0024 seconds