Return to search

Aprendizado relacional por um modelo neural

As técnicas que formam o campo da Descoberta de Conhecimento em Bases de Dados (DCBD) surgiram devido à necessidade de se tratar grandes volumes de dados. O processo completo de DCBD envolve um elevado grau de subjetividade e de trabalho não totalmente automatizado. Podemos dizer que a fase mais automatizada é a de Mineração de Dados (MD). Uma importante técnica para extração de conhecimentosa partir de dados é a Programação Lógica Indutiva (PLI), que se aplica a tarefas de classificação, induzindo conhecimento na forma da lógica de primeira ordem. A PLI tem demonstrado as vantagens de seu aparato de aprendizado em relação a outras abordagens, como por exemplo, aquelas baseadas em aprendizado proposicional Os seus algorítmos de aprendizado apresentam alta expressividade, porém sofrem com a grande complexidade de seus processos, principalmente o teste de corbertura das variáveis. Por outro lado, as Redes Neurais Artificiais (RNs) introduzem um ótimo desempenho devido à sua natureza paralela. às RNs é que geralmente são "caixas pretas", o que torna difícil a obtenção de um interpretação razoável da estrutura geral da rede na forma de construções lógicas de fácil compreensão Várias abordagens híbridas simbólico-conexionistas (por exemplo, o MNC MAC 890 , KBANN SHA 94 , TOW 94 e o sistema INSS OSO 98 têm sido apresentadas para lidar com este problema, permitindo o aprendizado de conhecimento simbólico através d euma RN. Entretanto, estas abordagens ainda lidam com representações atributo-valor. Neste trabalho é apresentado um modelo que combina a expressividade obtida pela PLI com o desempenho de uma rede neural: A FOLONET (First Order Neural Network).

Identiferoai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/1463
Date January 2001
CreatorsHernandez, Juliana Delgado Santos
ContributorsEngel, Paulo Martins
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds