This report details the design of a garbage collection (GC) module, which introduces modern GC features to the domain of embedded implementations. The described design supports weak references and feeds reference queues. Its architecture allows multiple concurrent application cores operating as mutators on the shared memory managed by the GC module. The garbage collection is exact and fully concurrent so as to enable the uninterrupted computational progress of the mutators. It combines a distributed root marking with a centralized heap scan of the managed memory. It features a novel mark-and-copy GC strategy on a segmented memory, which thereby overcomes both the tremendous space overhead of two-space copying and the compaction race of mark-and-compact approaches. The proposed GC architecture has been practically implemented and proven using the embedded bytecode processor SHAP as a sample testbed. The synthesis results for settings up to three SHAP mutator cores are given and online functional measurements are presented. Basic performance dependencies on the system configuration are evaluated.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:26175 |
Date | 14 November 2012 |
Creators | Preußer, Thomas B., Reichel, Peter, Spallek, Rainer G. |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:workingPaper, info:eu-repo/semantics/workingPaper, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:14-qucosa-79344, qucosa:24841 |
Page generated in 0.0023 seconds