Microbial metabolism can be tailored to meet human specifications, but the degree to which these living systems can be repurposed is still unknown. Artificial biological control strategies are being developed with the goal of enabling the predictable implementation of novel biological functions (e.g., engineered metabolism). This dissertation project contributes genetic tools useful for modulating gene expression levels (extending promoters with UP elements) and isolating transcription and translation of engineered DNA from the endogenous cellular network (expression by orthogonal cellular machinery), which have been demonstrated in Escherichia coli for the production of lycopene, a 40-carbon tetraterpene carotenoid with antioxidant activity and a number of other desirable properties.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-4086 |
Date | 19 April 2013 |
Creators | McArthur, George Howard, IV |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0023 seconds