Avec le développement rapide et les applications étendues de la technologie de robot, la recherche sur le robot mobile intelligent a été programmée dans le plan de développement de haute technologie dans beaucoup de pays. La navigation autonome joue un rôle de plus en plus important dans le domaine de recherche du robot mobile intelligent. La localisation et la construction de cartes sont les principaux problèmes à résoudre par le robot pour réaliser une navigation autonome. Les techniques probabilistes (telles que le filtre étendu de Kalman et le filtre de particules) ont longtemps été utilisées pour résoudre le problème de localisation et de cartographie robotisées. Malgré leurs bonnes performances dans les applications pratiques, ils pourraient souffrir du problème d'incohérence dans les scénarios non linéaires, non gaussiens. Cette thèse se concentre sur l'étude des méthodes basées sur l'analyse par intervalles appliquées pour résoudre le problème de localisation et de cartographie robotisées. Au lieu de faire des hypothèses sur la distribution de probabilité, tous les bruits de capteurs sont supposés être bornés dans des limites connues. Sur la base d'une telle base, cette thèse formule le problème de localisation et de cartographie dans le cadre du problème de satisfaction de contraintes d'intervalle et applique des techniques d'intervalles cohérentes pour les résoudre de manière garantie. Pour traiter le problème du "lacet non corrigé" rencontré par les approches de localisation par ICP (Interval Constraint Propagation), cette thèse propose un nouvel algorithme ICP traitant de la localisation en temps réel du véhicule. L'algorithme proposé utilise un algorithme de cohérence de bas niveau et est capable de diriger la correction d'incertitude. Par la suite, la thèse présente un algorithme SLAM basé sur l'analyse d'intervalle (IA-SLAM) dédié à la caméra monoculaire. Une paramétrisation d'erreur liée et une initialisation non retardée pour un point de repère naturel sont proposées. Le problème SLAM est formé comme ICSP et résolu par des techniques de propagation par contrainte d'intervalle. Une méthode de rasage pour la contraction de l'incertitude historique et une méthode d'optimisation basée sur un graphique ICSP sont proposées pour améliorer le résultat obtenu. L'analyse théorique de la cohérence de la cartographie est également fournie pour illustrer la force de IA-SLAM. De plus, sur la base de l'algorithme IA-SLAM proposé, la thèse présente une approche cohérente et peu coûteuse pour la localisation de véhicules en extérieur. Il fonctionne dans un cadre en deux étapes (enseignement visuel et répétition) et est validé avec un véhicule de type voiture équipé de capteurs de navigation à l'estime et d'une caméra monoculaire. / With the rapid development and extensive applications of robot technology, the research on intelligent mobile robot has been scheduled in high technology development plan in many countries. Autonomous navigation plays a more and more important role in the research field of intelligent mobile robot. Localization and map building are the core problems to be solved by the robot to realize autonomous navigation. Probabilistic techniques (such as Extented Kalman Filter and Particle Filter) have long been used to solve the robotic localization and mapping problem. Despite their good performance in practical applications, they could suffer the inconsistency problem in the non linear, non Gaussian scenarios. This thesis focus on study the interval analysis based methods applied to solve the robotic localization and mapping problem. Instead of making hypothesis on the probability distribution, all the sensor noises are assumed to be bounded within known limits. Based on such foundation, this thesis formulates the localization and mapping problem in the framework of Interval Constraint Satisfaction Problem and applied consistent interval techniques to solve them in a guaranteed way. To deal with the “uncorrected yaw” problem encountered by Interval Constraint Propagation (ICP) based localization approaches, this thesis proposes a new ICP algorithm dealing with the real-time vehicle localization. The proposed algorithm employs a low-level consistency algorithm and is capable of heading uncertainty correction. Afterwards, the thesis presents an interval analysis based SLAM algorithm (IA-SLAM) dedicates for monocular camera. Bound-error parameterization and undelayed initialization for nature landmark are proposed. The SLAM problem is formed as ICSP and solved via interval constraint propagation techniques. A shaving method for landmark uncertainty contraction and an ICSP graph based optimization method are put forward to improve the obtaining result. Theoretical analysis of mapping consistency is also provided to illustrated the strength of IA-SLAM. Moreover, based on the proposed IA-SLAM algorithm, the thesis presents a low cost and consistent approach for outdoor vehicle localization. It works in a two-stage framework (visual teach and repeat) and is validated with a car-like vehicle equipped with dead reckoning sensors and monocular camera.
Identifer | oai:union.ndltd.org:theses.fr/2018SACLS395 |
Date | 19 October 2018 |
Creators | Wang, Zhan |
Contributors | Université Paris-Saclay (ComUE), Lambert, Alain |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds