Return to search

Knowledge Representation, Reasoning and Learning for Non-Extractive Reading Comprehension

abstract: While in recent years deep learning (DL) based approaches have been the popular approach in developing end-to-end question answering (QA) systems, such systems lack several desired properties, such as the ability to do sophisticated reasoning with knowledge, the ability to learn using less resources and interpretability. In this thesis, I explore solutions that aim to address these drawbacks.

Towards this goal, I work with a specific family of reading comprehension tasks, normally referred to as the Non-Extractive Reading Comprehension (NRC), where the given passage does not contain enough information and to correctly answer sophisticated reasoning and ``additional knowledge" is required. I have organized the NRC tasks into three categories. Here I present my solutions to the first two categories and some preliminary results on the third category.

Category 1 NRC tasks refer to the scenarios where the required ``additional knowledge" is missing but there exists a decent natural language parser. For these tasks, I learn the missing ``additional knowledge" with the help of the parser and a novel inductive logic programming. The learned knowledge is then used to answer new questions. Experiments on three NRC tasks show that this approach along with providing an interpretable solution achieves better or comparable accuracy to that of the state-of-the-art DL based approaches.

The category 2 NRC tasks refer to the alternate scenario where the ``additional knowledge" is available but no natural language parser works well for the sentences of the target domain. To deal with these tasks, I present a novel hybrid reasoning approach which combines symbolic and natural language inference (neural reasoning) and ultimately allows symbolic modules to reason over raw text without requiring any translation. Experiments on two NRC tasks shows its effectiveness.

The category 3 neither provide the ``missing knowledge" and nor a good parser. This thesis does not provide an interpretable solution for this category but some preliminary results and analysis of a pure DL based approach. Nonetheless, the thesis shows beyond the world of pure DL based approaches, there are tools that can offer interpretable solutions for challenging tasks without using much resource and possibly with better accuracy. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2019

Identiferoai:union.ndltd.org:asu.edu/item:55482
Date January 2019
ContributorsMitra, Arindam (Author), Baral, Chitta (Advisor), Lee, Joohyung (Committee member), Yang, Yezhou (Committee member), Devarakonda, Murthy (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format236 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0018 seconds