Return to search

Aplicação e avaliação de desempenho de um sistema de otimização em tempo real em uma unidade de produção de propeno. / Implementation and performance evaluation of a real-time optimization system in a propylene production unit.

Com o objetivo de aumentar o lucro de plantas químicas, a Otimização em Tempo Real (RTO) é uma ferramenta que busca determinar as condições ótimas operacionais do processo em estado estacionário, respeitando as restrições operacionais estabelecidas. Neste trabalho foi realizada a implementação prática de um ciclo RTO em um processo de destilação por recompressão de vapor (VRD), propileno-propano, da Refinaria de Paulínia (Petrobras S.A.), a partir de dados históricos da planta. Foram consideradas as principais etapas de um ciclo clássico de RTO: identificação de estado estacionário, reconciliação de dados, estimação de parâmetros e otimização econômica. Essa unidade foi modelada, simulada e otimizada em EMSO (Environment for Modeling, Simulation and Optimization), um simulador de processos orientado a equações desenvolvido no Brasil. Foram analisados e comparados dois métodos de identificação de estado estacionário, um baseado no teste estatístico F e outro baseado em wavelets. Ambos os métodos tiveram resultados semelhantes e mostraram-se capazes de identificar os estados estacionários de forma satisfatória, embora seja necessário o ajuste de parâmetros na sua implementação. Foram identificados alguns pontos estacionários para serem submetidos ao ciclo RTO e foi possível verificar a importância de partir de um estado estacionário para a continuidade do ciclo, já que essa é uma premissa do método. A partir dos pontos analisados, os resultados deste estudo mostram que o RTO é capaz de aumentar o ganho econômico entre 2,5-24%, dependendo das condições iniciais consideradas, o que pode representar ganhos de até 18 milhões de dólares por ano. Além disso, para essa unidade, verificou-se que o compressor é um equipamento limitante no aumento de ganho econômico do processo. / In order to increase the profits of chemical plants, the Real-Time Optimization (RTO) is a tool that seeks to determine the steady-state optimal process operating conditions to maximize its profit under the operational restrictions. In this work, a practical implementation of a RTO cycle was implemented in a vapor recompression distillation (VRD) process, propylene-propane, from Paulínia Refinery (Petrobras S.A.), from historical plant data. The main steps of a classical RTO cycle are considered: steady-state identification, data reconciliation, parameter estimation and economical optimization. This unit was modeled, simulated and optimized in EMSO (Environment for Modeling, Simulation and Optimization), which is an equation oriented simulator conceived and developed in Brazil. Two steady state identification methods were analyzed and compared, one based on a F-like test and other based on wavelets. Both methods had similar results and showed to be able to identify the stationary states satisfactorily, although parameter tuning is necessary in their implementation. Some stationary points were identified and submitted to the RTO cycle. It was possible to verify the importance of start from a steady-state to continue the cycle, since this is a premise of the method. From the points analyzed, the results of this study show that the RTO is able to increase the economic gain between 2.5- 24%, depending on the initial conditions that is considered, which may represent gains of up to 18 million dollar per year. Furthermore, for this unit, it was found that the compressor is a limiting equipment in increasing economical gain.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-04072016-151354
Date27 April 2016
CreatorsMenezes, Danilo Ramos Correa de
ContributorsRoux, Galo Antonio Carrillo Le
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0016 seconds