Return to search

MODELOS BASEADOS EM REDES NEURAIS ARTIFICIAIS COM APLICAÇÃO EM CONTROLE INDIRETO DE TEMPERATURA / BASED ON MODELS WITH ARTIFICIAL NEURAL NETWORKS FOR A TEMPERATURE CONTROL INDIRECT

Made available in DSpace on 2016-08-17T14:52:39Z (GMT). No. of bitstreams: 1
DISSERTACAO_DENIS FABRICIO SOUSA DE SA.pdf: 2409581 bytes, checksum: 4de5274676a1f75ffe2a1f6b46b1388c (MD5)
Previous issue date: 2015-04-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The representation of dynamic systems or plants via mathematical models occupies an important position in control system design that allow the performance evaluation of the controller during his development stage.
These models are also used as an alternative to solve the problem of the hardness or impracticability to install sensors that measure the controlled variables, the dynamic systems representations enable non-invasive measurement of these variables. As consequence the designer has an alternative way to perform adaptive and optimal sensorless control for a given process.
In this dissertation is presented a proposal for control systems schemas and algorithms, based on recurrent neural networks (ANN) and Box-Jenkins models, that are dedicated to sensorless or indirect control of dynamic systems. The proposed models and algorithms are associated with the systems identification and recurrent ANN approaches. The algorithms developed for the AAN training are Backpropagation Accelerated and RLS types that are compared with classical methods and strategies to obtain it online parameters of indirect control of system for a thermal plant, where the actuator is Peltier cell.
The performance the parametric models of the plant and adaptive PID digital controllers and linear quadratic regulator (DLQR) that are the main elements of the sensorless temperature control system, are evaluated by means of hybrid simulations, where the algorithms implemented in micro controllers and the plant represented by mathematical models.
The performance results of the proposed sensorless control algorithms are promissory, not only, in terms of the control system performance, but also due to the reexibility to deploy it in other dynamic systems. / A representação de sistemas dinâmicos ou plantas por meio modelos matemáticos ocupa uma posição relevante no projeto de sistemas de controle, permitindo que o projetista avalie o desempenho dos controladores durante a fase de desenvolvimento do projeto. Estes modelos também são utilizados para resolver o problema da dificuldade ou impossibilidade da inserção de sensores em plantas para medição de variáveis controladas, onde os modelos viabilizam a mediação não invasiva destas variáveis, fornecendo uma alternativa para realização do controle indireto adaptativo e ótimo de um dado processo. Nesta dissertação apresenta-se o desenvolvimento de modelos propostos baseados em redes neurais artificiais recorrentes para o controle sensorless ou indireto da planta. Os modelos propostos estão associados com as abordagens de Identificação de Sistemas e de RNA's recorrentes. OS algoritmos desenvolvidos para o treinamento das RNAs são do tipo Backpropagation acelerado e RLS, que são comparados com estratégias e métodos clássicos, para obtenção online dos parâmetros do sistema de controle indireto de uma planta térmica, tendo como atuador uma célula Peltier. Para uns de avaliação de desempenho do sistema de controle indireto da planta, os modelos paramétricos e controladores digitais adaptativos do tipo PID e regulador linear quadrático (DLQR) são avaliados por meio de simulações híbridas, sendo os algoritmos dos controladores implementados em microcontroladores e a planta representada por modelos matemáticos. Os resultados apresentados são promissores, não são sentido do desempenho do sistema de controle, mas também nos custos reduzidos para seu desenvolvimento, operação e flexibilidade de aplicação em outros sistemas dinâmicos.

Identiferoai:union.ndltd.org:IBICT/oai:tede2:tede/295
Date10 April 2015
CreatorsSá, Denis Fabrício Sousa de
ContributorsFonseca Neto, João Viana da, Catunda, Sebastian Yuri Cavalcanti, Serra, Ginalber Luiz de Oliveira
PublisherUniversidade Federal do Maranhão, PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET, UFMA, BR, Engenharia
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFMA, instname:Universidade Federal do Maranhão, instacron:UFMA
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds