Le thème central de la présente thèse est le contenu sémantique des quantificateurs logiques. Dans leur forme la plus simple, les quantificateurs permettent d’établir l’existence, ou la non-existence, d’individus répondant à une propriété. En tant que tels, ils incarnent la richesse et la complexité de la logique du premier ordre, par delà la logique propositionnelle. Nous contribuons à l’analyse sémantique des quantificateurs, du point de vue de la théorie de la dualité, dans trois domaines différents des mathématiques et de l’informatique théorique. D’une part, dans la théorie des langages formels à travers la logique sur les mots. D’autre part, dans la logique intuitionniste propositionnelle et dans l’étude de l’interpolation uniforme. Enfin, dans la topologie catégorique et dans la sémantique catégorique de la logique du premier ordre. / The unifying theme of the thesis is the semantic meaning of logical quantifiers. In their basic form quantifiers allow to state theexistence, or non-existence, of individuals satisfying a property. As such, they encode the richness and the complexity of predicate logic, as opposed to propositional logic. We contribute to the semantic understanding of quantifiers, from the viewpoint of duality theory, in three different areas of mathematics and theoretical computer science. First, in formal language theory through the syntactic approach provided by logic on words. Second, in intuitionistic propositional logic and in the study of uniform interpolation. Third, in categorical topology and categorical semantics for predicate logic.
Identifer | oai:union.ndltd.org:theses.fr/2018USPCC210 |
Date | 10 September 2018 |
Creators | Reggio, Luca |
Contributors | Sorbonne Paris Cité, Gehrke, Mai |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Collection, StillImage |
Page generated in 0.002 seconds