Return to search

Propriétés d'approximation pour les groupes quantiques discrets

Cette thèse porte sur les propriétés d'approximation pour les groupes quantiques discrets et particulièrement sur la moyennabilité faible. Notre but est d'appliquer des techniques de théorie géométrique des groupes à l'étude des groupes quantiques. Nous définissons d'abord la moyennabilité faible dans le cadre des groupes quantiques discrets et nous développons une théorie générale en nous inspirant du cas classique. Nous nous attachons particulièrement à la notion de constante de Cowling-Haagerup. Nous définissons aussi une notion de moyennabilité relative qui nous permet de démontrer un résultat de stabilité supplémentaire. Un travail similaire est effectué pour la propriété de Haagerup. Enfin, nous abordons la question des produits libres de groupes quantiques faiblement moyennables. En nous inspirant des travaux de E. Ricard et X. Qu sur les inégalités de Kintchine, nous démontrons que si deux groupes quantiques discrets ont une constante de Cowling-Haagerup égale à 1, leur produit libre amalgamé sur un sous-groupe quantique fini a également une constante de Cowling-Haagerup égale à 1. Ensuite, nous donnons des exemples de groupes quantiques discrets faiblement moyennables. Nous utilisons les travaux de M. Brannan sur la propriété de Haagerup ainsi que des idées liées aux inégalités de Haagerup. Nous donnons une borne polynomiale pour la norme complètement bornée de certains projecteurs qui nous permet ensuite de "découper" les fonctions de M. Brannan pour prouver la moyennabilité faible. Enfin, nous appliquons des techniques d'équivalence monoïdale pour étendre ces résultats à d'autres classes de groupes quantiques, dont certains ne sont pas unimodulaires.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00944288
Date21 November 2013
CreatorsFreslon, Amaury
PublisherUniversité Paris-Diderot - Paris VII
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0018 seconds