Return to search

Effects of Electronic Cigarette Liquid Solvents Propylene Glycol and Vegetable Glycerin on User Nicotine Delivery, Heart Rate, Subjective Effects, and Puff Topography

Electronic cigarettes (ECIGs) are a class of tobacco products that use a heating element to aerosolize a liquid, typically containing nicotine, allowing for user inhalation. Despite their rapid growth in popularity, little is known about ECIGs including how certain device and liquid factors influence nicotine delivery, user physiological and subjective responses, and puffing behavior (puff topography). Limited pre-clinical research has demonstrated that the ratio of two solvents commonly found in ECIG liquids, propylene glycol (PG) and vegetable glycerin (VG), may have an influence on the nicotine content of ECIG aerosols. However, the extent to which PG:VG ratio in ECIG liquids influences acute effects experienced by ECIG users is unknown. The primary purpose of this clinical laboratory study was to examine the influence of PG:VG ratio on plasma nicotine concentration, heart rate (HR), subjective effects, and puff topography in experienced ECIG users.
Thirty ECIG-experienced individuals participated in four independent laboratory conditions that differed only by the PG:VG ratio in the ECIG liquid (100:0, 55:45, 20:80, and 2:98). In each condition, participants used a 3.3 volt “eGo” ECIG battery attached to a 1.5 Ohm dual coil “cartomizer” loaded with 1 ml of ECIG liquid (nicotine concentration: 18 mg/ml). Participants completed two ECIG use bouts (10 puffs with 30 sec inter-puff-interval) in each study condition. ECIG PG:VG ratio had a direct influence on nicotine delivery, subjective effects, and puff topography. Nicotine delivery and overall nicotine intake were highest following the use of the liquids containing mostly PG, despite participants taking significantly shorter and smaller puffs in these conditions, suggesting PG may be a more efficient nicotine-delivery vehicle than VG. Abstinence symptoms were suppressed similarly across all PG:VG ratios, and HR also increased in a similar fashion in all conditions following ECIG use. Participants reported significantly lower scores on items assessing sensory ECIG effects following use of the 100PG:0VG liquid, indicating a lower overall satisfaction with this liquid. Further evaluating the influence of PG and VG and other ECIG device and liquid characteristics on ECIG acute effects using clinical laboratory methodologies could inform regulations of these products.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-6305
Date01 January 2018
CreatorsSpindle, Tory
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© Tory R. Spindle

Page generated in 0.0019 seconds