La protéine humaine hERG (human ether-à-go-go related gene) s’associe en homo-tétramère pour former le canal potassique voltage-dépendant Kv11.1. C’est un acteur majeur de la repolarisation du potentiel d’action cardiaque par sa capacité à externaliser le potassium du cardiomyocyte. L’altération de sa fonction induit le syndrome du QT long à l’origine d’arythmies cardiaques et pouvant conduire à un arrêt du cœur. Ce syndrome parfois génétique provient le plus souvent d’une inhibition pharmacologique. De nombreux médicaments ont montré leur capacité à inhiber hERG en se fixant dans la lumière du canal. L’étude des interactions moléculaires entre hERG et médicaments intéresse les scientifiques depuis de nombreuses années. Très récemment, la première structure atomique de hERG à l’état ouvert par cryo-microscopie électronique a permis une avancée majeure dans la compréhension de l’agencement du pore du canal. De nombreuses questions restent malgré tout non résolues concernant les mécanismes de liaison des ligands. Plus encore, le développement d’approches biophysiques à partir de canal purifié permettraient de caractériser et d’anticiper des interactions avec les médicaments. Dans cette perspective, nous avons testé plusieurs stratégies pour obtenir le canal hERG purifié dans une forme stable, homogène et fonctionnelle. Notre étude est basée sur une construction simplifiée et chimérique du canal hERG, la version hERG(S1-coil). Chaque étape permettant la production et la purification d’une protéine membranaire a été optimisée en testant différentes techniques proposées par la littérature. Nous avons comparé les rendements d’expression du canal dans différents systèmes recombinants procaryotes ou eucaryotes. La quantité de protéine totale et le pourcentage de protéine fonctionnelle dans les membranes ont été étudiés. Dans un deuxième temps, le canal a été solubilisé puis purifié. Nous avons comparé les rendements de solubilisation et la stabilité protéique en fonction du type de détergent. En parallèle, nous avons mis au point des moyens techniques pour évaluer la fonction du canal au fur et à mesure du processus de production et purification. Le canal hERG(S1-coil) tétramérique et fonctionnel a finalement été identifié dans la fraction purifiée. Cependant, des optimisations sont encore à apporter pour conserver l’agencement tétramérique et empêcher l’agrégation au cours du temps avant de pouvoir envisager des études biophysiques et structurales. A terme, ces travaux pourraient profiter à la production et à la purification d’autres protéines membranaires oligomériques. / The human protein hERG (human ether-à-go-go related gene) assembles as homo-tetramer to form the voltage-gated potassium channel Kv11.1. This channel is involved in repolarization of the cardiac action potential by regulating the potassium release from cardiomyocytes. hERG malfunction was found to cause long QT syndrome, a disorder that predisposes affected patients to arrhythmias and sudden death. This can be due to congenital mutation in the hERG gene and, most frequently, it is caused by pharmacological agents. Several drugs are known to block the channel ion pathway, resulting in off-target inhibition of hERG. Consequently, understanding the molecular basis of drug binding to hERG has become a high priority. The recent determination of a near-atomic resolution structure of the opened channel, using cryo-electron microscopy, provides insights into how this channel work. But several questions are still unanswered to understand the mechanisms of hERG function and drug binding. Moreover, new biophysical protocols with the purified hERG channel would help scientists and industries to anticipate drug side effects. In this context, we investigated strategies to purify a stable, homogenous and functional hERG channel. Our study was based on a shorter and chimeric hERG channel, the hERG(S1-coil) version. We optimized each step from production to purification of membrane proteins by testing experimental protocols found in the literature. In this thesis project, we first compared production rates of the channel in several prokaryote and eukaryotes recombinant systems. Total protein produced and the percent of functional channel were investigated in membranes from each recombinant system. Then, the channel was extracted from membranes before purification. Solubilizing rates and channel stability were compared depending on detergents. In another hand, we also developed protocols to investigate the channel stability and function along production and purification. A tetrameric and functional channel was finally purified and identified by this strategy. More work however is still needed to improve channel homogeneity and stability before to be suitable for biophysical and structural studies. In the future, this work could also help investigations in production and purification of other oligomeric membrane proteins.
Identifer | oai:union.ndltd.org:theses.fr/2017MONTT127 |
Date | 27 November 2017 |
Creators | Vasseur, Lucie |
Contributors | Montpellier, Chavanieu, Alain |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds