<p>The first part of the work describes a procedure of oligonucleotide purification using a reversed-phase cartridge. The developed method employs a very efficient yet mild oligonucleotide detritylation on the cartridge support allowing fast purification of oligonucleotides regardless of their 5´-modification. Thiol- and amino-modified oligonuc-leotides were detritylated and purified with the same high efficiency as non-modified oligonucleotides. The method enables fast, parallel and automated purification of many oligonucleotide probes that was not possible before. In combination with the method of removal of tritylated failure fragments oligonucleotides were produced with purity superior to that of oligonucleotides purified using RP HPLC.</p><p>In the second part of the present study a method of solid-phase RNA synthesis using 2´-tert-butyldithiomethyl (2´-O-DTM) is discussed. The stability of the DTM group during oligonucleotide assembly and deprotection in ammonia, together with its ability for rapid deprotection under mild conditions, allowed the synthesis of RNA with the quality similar to that of synthetic DNA oligonucleotides. The advantage of the 2´-O-DTM group is that it is completely orthogonal to all protecting groups used for the traditional solid-phase DNA synthesis. Therefore, the synthesis can be performed using a standard DNA synthesis procedure – no changes are needed for the product assembly. RNA oligonucleotides synthesized with retained 5´-terminal trityl group can be subjected to a cartridge-based purification using the procedure described in the first part of the study. The phosphoramidite synthesis was optimized for a large scale preparation and gives versatility for introduction of other alkyldithiomethyl groups according to the preference to their certain properties.</p><p>The third part of the thesis describes the synthesis of a dithiomethyl linker and its utility for reversible conjugation of oligonucleotides. A dithiomethyl group, cleavable under mild conditions, was introduced onto 3´-OH of tritylated nucleosides via 3´-O-methylthiomethyl derivatives. The influence of different alkyl substituents on the disulfide bond stability was investigated, and stable analogues were employed in oligosyntheses. Two applications were developed using the present linker: 1) purification of oligonucleotides linked to the solid support; and 2) cartridge-based purification of tritylated oligonucleotides having an additional hydrophobic group on their 3´- terminus.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-7172 |
Date | January 2006 |
Creators | Semenyuk, Andrey |
Publisher | Uppsala University, Department of Genetics and Pathology, Uppsala : Acta Universitatis Upsaliensis |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, text |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 179 |
Page generated in 0.0018 seconds