Return to search

Engineering of Mixed Matrix Membranes for Water Treatment, Protective Coating and Gas Separation

Mixed Matrix Membranes (MMMs) have received worldwide attention during the last decades. This is due to the fact that the resulting materials can combine the good processability and low cost of polymer membranes with the diverse functionality, high performance and thermal properties of the fillers. This work explores the fabrication and application of MMMs. We focused on the design and fabrication of nanofillers to impart target functionality to the membrane for water treatment, protective coating and gas separation.
This thesis is divided into three sections according to the application including:
I- Water Treatment: This part is divided into three chapters, two related to the membrane distillation (MD) and one related to the oil spill. Three different nanofillers have been used: Periodic mesoporous organosilica (PMO), graphene and carbon nanotube (CNT). Those nanofillers were homogeneously incorporated into polyetherimide (PEI) electrospun nanofiber membranes. The doped nanoparticle not only improved the mechanical properties and thermal stability of the pristine fiber but also enhanced the MD and oil spill performance due to the functionality of those nanofillers.
II- Protective coating: This part includes two chapters describing the design and the fabrication of a smart antibacterial and anti-corrosion coating.
In the first project, we fabricated colloidal lysozyme-templated gold nanoclusters gating antimicrobial-loaded silica nanoparticles (MSN-AuNCs@lys) as nano-fillers in poly(ethylene oxide)/poly(butylene terephthalate) polymer matrix. MSN-AuNCs@lys dispersed homogeneously within the polymer matrix with zero NPs leaching. The system was coated on a common radiographic dental imaging device that is prone to oral bacteria contamination. This coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria.
In the second project, the coaxial electrospinning approach has been applied to fabricate smart core-shell nanofiber for controlled release of anti-corrosion material. Acetal-dextran was used as a pH controlled shell of the fibers and polyvinyl alcohol (PVA) as a hydrophilic core. Caffeine, as an anti-corrosion inhibitor was encapsulated in the fiber core to test its potential application as an anticorrosion coating. The almost negligible release was noticed at neutral pH. In acidic pH due to corrosion, the fibers quickly respond by releasing caffeine cargo.
III- Gas separation: We describe the synthesis and application of novel ethylene-diamine-based PMO. The novel nanoparticles were homogeneously incorporated into polydimethylsiloxane to fabricate a MMMs thin layer on a porous polyacrylonitrile support. Our results prove that our PMOs can be used as nanofillers to enhance the CO2 selectivity of the PDMS polymer.

Identiferoai:union.ndltd.org:kaust.edu.sa/oai:repository.kaust.edu.sa:10754/626334
Date11 1900
CreatorsHammami, Mohamed Amen
ContributorsKhashab, Niveen M., Physical Science and Engineering (PSE) Division, Cavallo, Luigi, Ghaffour, NorEddine, Alouini, Mohamed-Slim, Kjan, Alicia
Source SetsKing Abdullah University of Science and Technology
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
Rights2018-12-08, At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2018-12-08.

Page generated in 0.0024 seconds