Presented in this dissertation are studies of protein dynamics and protein/protein interactions using solution phase hydrogen/deuterium exchange in combination with mass spectrometry (HXMS). In addition, gas phase fragmentation behaviors of deuterated peptides are investigated, with the purpose of increasing resolution of the HXMS. In the area of single protein dynamics, two protein systems are studied. Studies on the cytochrome c2 from Rhodobacter capsulatus indicate its domain stability to be similar to that of the horse heart cytochrome c. Further comparison of the exchange kinetics of the cytochrome c2 in its reduced and oxidized state reveals that the so-called hinge region is destabilized upon oxidation. We also applied a similar approach to investigate the conformational changes of photoactive yellow protein when it is transiently converted from the resting state to the signaling state. The central β-sheet of the protein is shown to be destabilized upon photoisomerization of the double bond in the chromophore. Another equally important question when it comes to understanding how proteins work is the interactions between proteins. To this end, two protein complexes are subjected to studies by solution phase hydrogen deuterium exchange and mass spectrometry. In the case of LexA/RecA interaction, both proteins show decreases in their extents of exchange upon complex formation. The potential binding site in LexA was further mapped to the same region that the protein uses to cleave itself upon interacting with RecA. In the sHSP/MDH system, hydrogen/deuterium exchange experiments revealed regions within sHSP-bound MDH that were significantly protected against exchange under heat denaturing condition, indicative of a partially unfolded state. Hydrogen/deuterium exchange therefore provides a way of probing low resolution protein structure within protein complexes that have a high level of heterogeneity. Finally, the feasibility of increasing resolution of HXMS by gas phase peptide fragmentation is investigated by using a peptide with three prolines near the C-terminus. Our data show that deuterium migration indeed occurs during the collision activated dissociation process. Caution is required when interpreting the MS/MS spectra as a way of pinpointing the exact deuterium distribution within peptides.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/195466 |
Date | January 2007 |
Creators | Cheng, Guilong |
Contributors | Wysocki, Vicki H., Wysocki, Vicki H., Vierling, Elizabeth, Saavedra, S. Scott, Aspinwall, Craig A., Cusanovich, Michael A. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Electronic Dissertation |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0021 seconds