Return to search

The Effects of SSRI Treatment on Human Placenta and Embryo

During pregnancy, 4 - 7% of women suffer from major depressive disorder. When antidepressive treatment is needed, selective serotonin reuptake inhibitors (SSRIs) are the most commonly used. Although severe complications from SSRI treatment are rare, association with a number of adverse pregnancy and fetal outcomes has been found. Also, antenatal depression per se has been shown to affect pregnancy outcomes. The overall aim of this thesis was to examine the effects of SSRIs on human placenta and embryo. In the first study, gene expression was investigated in placenta from depressed, SSRI-treated and healthy pregnant women, using microarray analysis. Antenatal depression and SSRI treatment induced alterations in gene expression, but only 20 genes in common were noted. Validation with qRT-PCR showed that six out of seven selected genes were altered in SSRI-treated women compared with controls, and two genes were altered between depressed women and controls. In study two, the protein levels in placenta from depressed, SSRI-treated and healthy pregnant women were investigated, focusing on the NGF signaling pathway. NGF, phosphorylated Raf-1, ROCK2 and phosphorylated ROCK2, were altered in both SSRI-treated and depressed women, although the proteins were regulated differently in the two groups. In the third study, human embryos were treated with fluoxetine. Embryo development and protein expression were studied. Fluoxetine had some effect on the timing of embryo developmental stages. Also, several proteins were uniquely found in fluoxetine-treated embryos compared with untreated embryos. Fluoxetine also altered the levels of proteins secreted from the embryo. In the fourth study, the human neuroblastoma cell line SH-SY5Y/TrkA was treated with TPA and NGF. The activation of Raf-1 was investigated and the involvement of Ras and PKC was studied. Both NGF and TPA activated Raf-1, but to a different extent and via different pathways. The NGF-induced activation of Raf-1 was mediated via Ras, while TPA induced signaling via PKC. In conclusion, SSRI treatment and antenatal depression influence placental gene and protein expression. These findings may affect placental development and function, which in turn could affect fetal development. Also, direct exposure of embryos to fluoxetine has some effects on embryo development and protein expression, which may affect the development of the fetus.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-248527
Date January 2015
CreatorsKaihola, Helena
PublisherUppsala universitet, Institutionen för kvinnors och barns hälsa, Uppsala
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 1095

Page generated in 0.0026 seconds