Diabetes mellitus type I is severe autoimmune disease which is caused by destruction of insulin-producing β-cells in pancreas. Diabetic patients are dependent on external usage of insulin during their whole life. Nowadays the only treatment of diabetes type I is transplantation of entire pancreas or isolated Langerhans islets. Due to the fact that this kind of treatment is very demanding and limited availability of suitable donors, the researchers are intensively working on development of new alternative ways how to produce the insulin-producing cells. One of the possible approaches on producing insulin-positive cells is transdifferentiation of pancreatic exocrine cells via transcription factors. In this diploma thesis, the transdifferentiation of exocrine cells AR42J was carried out with in vitro synthesized mRNA encoding transcription factors Pdx1, Ngn3 and MafA. The primary mRNA structure was optimized in order to prepare highly stable mRNA which is correctly translated into the protein. The main stabilizing elements in mRNA structure include 3' and 5' untranslated region derived from highly stable β-globin mRNA. In order to verify the function of synthetic mRNA the immunofluorescence staining of transcription factors has been investigated. Synthetic mRNAs encoding transcription factors Pdx1,...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:343848 |
Date | January 2015 |
Creators | Loukotová, Šárka |
Contributors | Hodek, Petr, Jirák, Daniel |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0023 seconds