Return to search

Skeletal muscle remodelling under distinct loading states in young men

Skeletal muscle is a plastic tissue capable of responding to environmental perturbations. Increased loading via resistance exercise (RE) activates muscle protein synthesis (MPS) and, to a lesser extent, muscle protein breakdown (MPB). The ingestion of protein further stimulates MPS and suppresses MPB, inducing a positive net protein balance and protein accretion – i.e., muscle hypertrophy. In contrast, muscle unloading reduces MPS, which is thought to be the key driver underpinning skeletal muscle atrophy. The degree of muscle hypertrophy and atrophy in response to loading and unloading varies significantly between individuals and provides an opportunity to investigate the molecular regulators of skeletal muscle remodelling. To that end, we developed a novel unilateral model in which one leg was subjected to RE to induce hypertrophy (Hyp) and the contralateral limb was immobilized to induce atrophy (At). In study 1, we characterized the morphological changes induced by our HypAt model and validated the use of ultrasonography to measure changes in muscle size in both limbs. We discovered that by assessing the differential change in muscle size between legs we reduced the coefficient of variation between subjects. This enabled a more in-depth means-based characterization of the molecular regulators of skeletal muscle remodelling. Indeed, we discovered significantly more genes regulated by muscle remodelling than similarly-sized studies. We also identified a transcriptional signature that scaled with lean mass gains in three independent cohorts and included RNA species that were only modulated at their untranslated regions. Finally, in study 3 we simultaneously measured MPS and MPB in response to short-term immobilization (4 days) and demonstrated for the first time that MPB is statistically unchanged by unloading. Taken together, these studies contribute significantly to our understanding of skeletal muscle remodelling under different loading states and provide a valuable hypothesis-generating resource for future research in the field. / Thesis / Doctor of Philosophy (PhD) / Adaptations of skeletal muscle to loading and unloading are variable between individuals. Herein, we employed a unilateral approach to better understand the drivers of this variability by assessing the influence of resistance training (RT) and disuse on muscle protein turnover and gene expression. First, we validated the use of ultrasound for measuring changes in muscle size in response to loading and unloading. We then identified thousands of genes regulated by loading status and discovered many that were correlated with lean mass gain – some of which would not have been detected without our model. We also demonstrated that RT-induced increases in muscle protein synthesis were not associated with changes in muscle size; however, reductions in muscle protein synthesis were associated with the degree of muscle atrophy observed in response to disuse. Together, these studies contribute significantly to our understanding of how skeletal muscle size is regulated by muscle loading and unloading.

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/27784
Date11 1900
CreatorsStokes, Tanner
ContributorsPhillips, Stuart, Kinesiology
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0013 seconds