Protein aggregation is a frequently cited problem during the development of liquid protein formulations, which is especially problematic since each protein exhibits different aggregation behaviour. Aggregation can be controlled by judicious choice of solution conditions, such as salt and buffer type and concentration, pH, and small molecule additives. However, finding conditions is still a trial and error process. In order to improve formulation development, a fundamental understanding of how excipients impact upon protein aggregation would significantly contribute to the development of stable protein therapeutics. The underlying mechanisms that control effects of excipients on protein behaviour are poorly understood. This dissertation is directed at understanding how excipients alter the conformational and colloidal stability of proteins and the link to aggregation. This knowledge can be used for finding novel ways of either predicting or preventing/inhibiting protein aggregation. Experiments using static and dynamic light scattering, intrinsic fluorescence, turbidity and electrophoretic light scattering were conducted to study the effect of solution conditions such as pH, salt type and concentration on protein aggregation behaviour for three model systems: lysozyme, insulin and a monoclonal antibody. Emphasis is placed on understanding the effects of solution additives on protein-protein interactions and the link to aggregation. This understanding has allowed the rational development of stable formulations with novel additives, such as arginine containing dipeptides and polycations.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:727829 |
Date | January 2015 |
Creators | Nuhu, Mariam |
Publisher | University of Manchester |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.research.manchester.ac.uk/portal/en/theses/proteinprotein-interactions-and-aggregation-in-biotherapeutics(1dba3d89-1474-486c-9eb9-6e21b4616dd9).html |
Page generated in 0.0017 seconds