Return to search

Ion-specific and water-mediated effects on protein physical stability

Protein aggregation and physical stability are perpetual concerns in medicine and industry. Misfolded protein can form ordered protein aggregates, amyloids, which are associated with a host of neurodegenerative diseases in mammals and control heritable traits in fungi and yeast. Industrially, amorphous aggregates reduce the efficacy of protein-based therapeutics and activity of enzymes during production and storage. This work studies ion-specific and solvent-based effects on protein physical stability. We show that ion-specificity significantly affects amyloid formation kinetics, aggregate morphology, thermostability, frangibility, and, most intriguingly, prion infectivity in vivo. Forming amyloid in chaotropic or kosmotropic solutions generates predominately weak or strong prion variants, respectively. Ion-specific effects also influenced amorphous aggregation of model proteins and antibodies. To quantify protein - protein stability/affinity, we developed a rapid and reliable diffusion-based technique. Our technique was able to resolve relative differences in colloidal stability between various saline and saccharide solutions. In all, this dissertation expands our understanding of ion-specific and water-mediated interactions with prion proteins and protein dispersions.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/47587
Date20 March 2013
CreatorsRubin, Jonathan
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0018 seconds