Return to search

Purification and Characterization of Proteolytic Aspartate Transcarbamoylase (ATCase) from Burkholderia cepacia 25416 and Construction of a pyrB1 Knock-out Mutant

Burkholderia cepacia is a common soil bacterium of significance in agriculture and bioremediation. B. cepacia is also an opportunistic pathogen of humans causing highly communicable pulmonary infections in cystic fibrosis and immunocompromized patients. The pyrB gene encoding ATCase was cloned and ATCase was purified by the glutathione S-transferase gene fusion system. The ATCase in B. cepacia has been previously classified as a class A enzyme by Bethell and Jones. ATCase activity gels showed that B. cepacia contained a holoenzyme pyrBC complex of 550 kDa comprised of 47 kDa pyrB and 45 kDa pyrC subunits. In the course of purifying the enzyme, trimeric subunits of 140 kDa and 120 kDa were observed as well as a unique proteolysis of the enzyme. The 47 kDa ATCase subunits were cleaved to 40 kDa proteins, which still demonstrated high activity as trimers. The proteolysis site is between Ser74 and Val75 residues. To confirm this, we converted the Ser74 residue to an Ala and to an Arg by site-directed mutagenesis. After this primary sequence changed, the proteolysis of ATCase was not observed. To further investigate the characteristics of B. cepacia pyrB gene, a pyrB knock-out (pyrB-) was constructed by in vitro mutagenesis. In the assay, the 550 kDa holoenzyme and 140 kDa and 120 kDa trimers disappeared and were replaced with a previously unseen 480 kDa holoenzyme pyrB- strain. The results suggest that B. cepacia has two genes that encode ATCase. ATC1 is constitutive and ATC2 is expressed only in the absence of ATC1 activity. To check for the virulence of these two strains, a eukaryotic model virulence test was performed using Caenorhabditis elegans (C. elegans). The pyrB1+pyrB2+ (wild type) B cepacia killed the nematode but pyrB1-pyrB2+ B. cepacia had lost its virulence against C. elegans. This suggests that ATC1 (pyrB1) is involved in virulence in B.cepacia and ATC2 (pyrB2) is not.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc4694
Date12 1900
CreatorsKim, Seongcheol
ContributorsO'Donovan, Gerard A., Benjamin, Robert C., Farinha, Mark A., Beck, Debrah A., Knesek, John
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Copyright, Kim, Seongcheol, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0025 seconds