Perfusion magnetic resonance imaging is a medical diagnostic method which requires high spatial and temporal resolution simultaneously to capture dynamics of an intravenous contrast agent which is used to perfusion measurement. However, magnetic resonance imaging has physical limits which do not allow to have this resolution simultaneously. This thesis deals with compressed sensing which enables to reconstruct measured data from relatively few acquired samples (below Nyquist rate) while resolution required to perfusion analysis is increased. This aim could be achieved with suitably proposed apriory information about sensed data and model proposal. The reconstruction is then done as an optimization problem. Doctoral thesis brings several new reconstruction models, further proposes method to debias this estimates and examines influence of compressed sensing onto perfusion parameters. Whole thesis is ended with extension of compressed sensing into three-dimensional data. Here, the influence of reconstruction onto perfusion parameters is also described. In summary, the thesis shows that due to compressed sensing, temporal resolution can be increased with the fixed spatial resolution or spatial resolution can be increased with the fixed temporal resolution.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:391305 |
Date | January 2018 |
Creators | Mangová, Marie |
Contributors | Polec,, Jaroslav, Šmídl, Václav, Rajmic, Pavel |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds