This study is focused on plasticity induced crack closure effect on fatigue crack propagation. It utilizes finite element method modeling to evaluate the effect of this phenomenon on crack propagation at a series of MT specimen configurations. The modeling has been done both 2D and 3D. Comparison of computed results with experiments explains effect of the phenomenon at performed experimental measurements. Above all, three-dimensional modeling provides assessment of plasticity induced crack closure through thickness of the object. Thereby it explains shapes of fatigue crack fronts and lays foundations for including plasticity induced crack closure phenomenon to fatigue crack growth predictions in three-dimensional space.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:382564 |
Date | January 2018 |
Creators | Šebík, Marek |
Contributors | Vojtek, Tomáš, Hutař, Pavel |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0024 seconds