The shikimate pathway links carbohydrate metabolism to biosynthesis of the aromatic amino acids in plants, fungi, bacteria and apicomplexan parasites. The pathway has seven enzymatic steps which convert erythrose-4-phosphate and phosphoenolpyruvate to chorismate, the precursor of tyrosine, tryptophan and phenylalanine. Due to the absence of the pathway in mammalian species, the enzymes are attractive targets for herbicides and antimicrobials. Shikimate dehydrogenase (SDH) catalyses the fourth step, the NADP-dependent reversible reduction of 3-dehydroshikimate to shikimate. Five SDH homologs – AroE, Ael1, YdiB, RifI and SdhL – have been identified through kinetic analysis and phylogenetic studies in the bacterium Pseudomonas putida. SDH homolog gene knockouts (KO) were used to characterize their functions. The AroE KO and Ael1 KO were successfully constructed via gene SOEing of the SDH homolog with a gentamycin antibiotic cassette and homologous recombination via electroporation into WT P. putida KT2440. Preliminary characterization tested KO growth, auxotroph recovery and fluorescent activity.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/33489 |
Date | 26 November 2012 |
Creators | Penney, Kathrine |
Contributors | Christendat, Dinesh |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0026 seconds