Return to search

Remediation of high phenol concentration using chemical and biological technologies

This thesis presents the potential of integrating chemical and biological treatment technologies for the removal of high concentrations of phenol in a bioremediation medium. High concentrations of phenol in wastewater are difficult to remove by purely biological methods. Chemical oxidation is one way to treat high concentrations of phenol but complete oxidation is not always possible or will make the treatment process uneconomical. An experimental design approach, based on central composite rotatable design (CCRD) was used to evaluate the effects of process parameters on phenol oxidation by Fentons reagent and chlorine dioxide. Performance of the chemical oxidation was evaluated by determining the percentage of phenol oxidized at equilibrium. The reaction mechanism for the oxidation of phenol by Fentons reagent was proposed based on identification of the intermediate compounds.<p>
The effects of H<sub>2</sub>O<sub>2</sub> concentration (2000 to 5000 mg L<sup>-1</sup>) and FeSO<sub>4</sub>.7H<sub>2</sub>O concentration (500 to 2000 mg L<sup>-1</sup>) were investigated on phenol oxidation and optimal concentrations of H<sub>2</sub>O<sub>2</sub> and FeSO<sub>4</sub>.7H<sub>2</sub>O for complete oxidation of 2000 mg L<sup>-1</sup> phenol in medium were found to be 4340 mg L<sup>-1</sup> and 1616 mg L<sup>-1</sup>, respectively, at 25°C and pH 3. The main oxidation products were identified as catechol, hydroquinone and maleic acid.<p>
In the case of phenol oxidation by chlorine dioxide, the effects of chlorine dioxide concentration (500 to 2000 mg L<sup>-1</sup>), temperature (10 to 40°C) and pH (3 to 7) on the oxidation of 2000 mg L<sup>-1</sup> of phenol were determined. The optimal concentration of chlorine dioxide to completely oxidize 2000 mg L<sup>-1</sup> of phenol was 2000 mg L<sup>-1</sup>. The other parameters did not significantly affect the oxidation over the ranges studied. The main oxidation products were identified as 1,4-benzoquinone and 2-chloro-1,4-benzoquinone.<p>
Finally, the biodegradation of 1,4-benzoquinone, the main oxidation product of phenol oxidation by chlorine dioxide, was studied in batch and continuous systems using Pseudomonas putida 17484 in two dose McKinneys medium. The effects of 1,4-benzoquinone concentration and temperature were studied on biodegradation of 1,4-benzoquinone in batch reactors. Under optimal conditions, it was found that 150 mg L<sup>-1</sup> 1,4-benzoquinone could be successfully biodegraded at 15°C. In a continuous reactor operating at 15°C the highest removal rate with 500 mg L<sup>-1</sup> of 1,4-benzoquinone was found to be 246 mg L<sup>-1</sup> h<sup>-1</sup>. The values of µmax, Ks and yield were also determined as 0.74±0.03 h<sup>-1</sup> and 14.17±3.21 mg L<sup>-1</sup> and 2x10<sup>13</sup> cell mg<sup>-1</sup>, respectively.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-11222010-011639
Date23 December 2010
CreatorsKumar, Pardeep
ContributorsHill, Gordon, Nemati, Mehdi, Pheonix, Aaron, Baik, Oon-doo, Dalai, Ajay, Niu, Catherine, Nader, Mahinpey
PublisherUniversity of Saskatchewan
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-11222010-011639/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0026 seconds