Return to search

Automatická klasifikace spánkových fází z polysomnografických dat / Automatic sleep scoring using polysomnographic data

The thesis is focused on analysis of polysomnographic signals based on extraction of chosen parameters in time, frequency and time-frequency domain. The parameters are acquired from 30 seconds long segments of EEG, EMG and EOG signals recorded during different sleep stages. The parameters used for automatic classification of sleep stages are selected according to statistical analysis. The classification is realized by artificial neural networks, k-NN classifier and linear discriminant analysis. The program with a graphical user interface was created using Matlab.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:256520
Date January 2016
CreatorsVávrová, Eva
ContributorsPotočňák, Tomáš, Ronzhina, Marina
PublisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0018 seconds