Many studies have recently reported estimates of greenhouse gas (GHG) emissions and associated potential climate impacts of biofuel and natural gas (NG) use. U.S. corn ethanol production keeps increasing under federal mandates, and NG production soars due to successful tapping of unconventional resources in North America, particularly shale gas. Numerous life cycle assessment (LCA) studies document technology specific corn ethanol and NG GHG estimates. The estimates often include all life cycle stages from fuel supply to combustion, and point out potential for emissions reductions.
Several studies suggest that using GHG emissions as an evaluation metric underestimates corn ethanol’s radiative forcing (RF) impact – a precursor and indicator for global temperature change – by 10-90% over the next few decades. This emissions timing effect may overestimate (i) ethanol’s climate benefits over gasoline and (ii) the effectiveness of U.S. policies mandating and subsidizing ethanol. This work revisits the above studies, and builds upon existing models to quantify RF impacts across the corn ethanol life cycle. The emissions timing factor (ETF) is significantly smaller than previous estimates (2-13% depending on the chosen impact time frame), and the effect is dwarfed by uncertainty in the GHG emissions estimates. Nevertheless, ETF reduces ethanol’s probability of meeting the federal target of 20% GHG reduction relative to gasoline from 53% (according to EPA GHG estimates) to 7-29%. However, the small potential climate impacts from U.S. ethanol use may not actually be observable based on estimated initial increases in global average surface temperature of < 0.001 °C.
About 25% of global primary energy production comes from NG, whose life cycle GHG emissions and potential future climate impacts from substituting coal are highly uncertain due to fugitive methane (CH4) emissions from the NG industry. Accurately quantifying the NG fugitive emissions (FE) rate – the percentage of produced NG, mainly CH4 and ethane (C2H6) – released to the atmosphere is challenging due to the size and complexity of the NG industry. Recent LCA estimates suggest that the current NG FE rate could be as high as 8% and 6%, from shale and conventional NG, respectively, and other bottom-up studies indicate even higher rates several decades ago. This work analyzes possible ranges of the global average NG FE rate based on atmospheric CH4, C2H6, and carbon isotope (δ13C-CH4) measurements recorded since 1984, and top-down modeling of their sources and sinks.
Box-model, δ13C-CH4mass balance, and 3D-modeling results agree on best estimate NG FE rates of 3-5% (of dry NG production and dry NG composition) globally over the past decade, and 5-8% around 1990. Upper bound FE rates are 5% and 7% in 2010 and 2000, respectively. Best estimate and upper bound values may be overestimated because both assume lower bound emissions from oil and coal production as well as complete absence of natural hydrocarbon seepage. While LCA studies are useful for identifying processes with the greatest NG FE reduction potential, the recent high bottom-up estimates do not appear representative of the U.S. national average based on top-down modeling results. Given the steadily declining NG FE rates one may expect that further emissions abatement is possible if industry practices are further improved.
Identifer | oai:union.ndltd.org:cmu.edu/oai:repository.cmu.edu:dissertations-1302 |
Date | 01 December 2013 |
Creators | Schwietzke, Stefan |
Publisher | Research Showcase @ CMU |
Source Sets | Carnegie Mellon University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Dissertations |
Page generated in 0.9932 seconds