A series of five studies were conducted to examine the effect of exercise on selected pulmonary function measurements. Studies I and II determined the effect of an acute bout of exercise on various lung volumes immediately post-exercise and over a 24-hour post-exercise period. There were significant mean increases of 210 ml (20.6%) and 260 ml (20.8%) in the 5-minute post-exercise residual volume (RV) measurement for studies I and II, respectively. There also were significant mean increases of 170 ml (3.4%) and 190 ml (2.7%) in the 5-minute post-exercise total lung capacity (TLC) for studies I and II, respectively, while vital capacity (VC) remained unchanged. RV and TLC remained significantly increased over the pre-exercise values through 30 and 15 minutes of recovery, respectively. Studies III through V were undertaken to determine the physiological mechanism underlying the responses reported in studies I and II. In study III, transthoracic electrical impedance (TEI) was significantly decreased below the pre-exercise value through 30-minutes of recovery, indicating that there was an increase in thoracic fluid volume following exercise. However, TEI measurements alone cannot separate between intra- and extravascular fluid shifts. Therefore, studies IV and V attempted to identify whether the decrease in TEI and increase in RV reported in study III were due to intra- or extravascular fluid shifts. Study IV examined the TEI, RV, and TLC responses before and following exercise, as central blood volume (CBV) was experimentally increased via G-suit inflation, and decreased via venous occlusion tourniquets. The results suggest that RV is relatively insensitive to intravascular volume shifts within the thorax. Study V determined and followed the effect of an acute bout of exercise on lung diffusion capacity (D(,Lco)). D(,Lco)/V(,A) did not increase significantly following exercise, suggesting that the decrease in TEI following exercise is the result of extravascular fluid accumulation. It was concluded that a sub-clinical pulmonary edema occurs following exercise. A logical sequence of events based on the results of studies I through V was proposed as a possible explanation for the responses of RV and TLC following exercise.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/183981 |
Date | January 1982 |
Creators | BUONO, MICHAEL JOSEPH. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Dissertation-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.002 seconds