Return to search

Cathode Erosion and Propellant Injection System of a Low-Voltage, Liquid-Fed Pulsed Plasma Thruster

<p>Prior to the mid-20th century, the idea of electric propulsion had been all but a foreign one that manifested itself in the topic of science fiction. It was around this time when companies and agencies like NASA began to take interest in the topic of space propulsion, as most famously seen in the landing of the Apollo 11 mission on the moon. It was not until the early-1960s where the idea of a pulsed plasma thruster was first realized, with its first test being in 1964 aboard the Russian Zond-2 satellite which contained 6 ablative Polytetrafluoroethylene (PTFE, or “Teflon”) pulsed plasma thrusters.</p>
<p>In this paper, a new low-voltage, liquid-fed pulsed plasma thruster was developed, tested, and characterized. This project took influence from the previous low-voltage, liquid-fed pulsed plasma thruster in Purdue’s EPPL and desired to transition it from a current gas-fed system to its intended liquid-fed system. The two main objectives for this project included conducting direct studies of the cathode’s erosion rate using a simple weighing method after simulating a lifetime of discharging the thruster, and completing the initial design of the liquid-fed pulsed plasma thruster using AF-M315E as its propellant while gathering data on its required breakdown voltage, exhaust velocity, and specific impulse.</p>
<p>Both objectives were successfully completed, with the following parameters being measured or calculated. The required breakdown voltage was seen to be less than 26kV to keep the ignition spark inside the chamber. For the subsequent results measured however, the breakdown voltage was kept between 10-16kV for all successive tests. The peak current measured for all discharges was an average of 11kA, far exceeding similar geometries such as MPD thrusters. The operational voltage was less than 200V, although an operational voltage closer to 100V is expected after further optimization of the system is completed. The erosion rate of the tungsten cathode at this operational setting was found to be 15.4046 +/- 0.592 microgram/Coulomb which is much less than the cathode spot erosion rate reported for tungsten in literature of about 60 microgram/Coulomb and is beneficial for extending system lifetime. The exhaust velocity was calculated to be 30.6 +/- 4.8km/s which is typical of state-of-the-art PPT electric propulsion devices. The specific impulse was also extrapolated from the ion’s exhaust velocity, calculating to be 3,119 +/- 489 seconds. Future work would require optimization of the propellant injection mechanism to minimize propellant loss.</p>

  1. 10.25394/pgs.22761368.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/22761368
Date04 May 2023
CreatorsBrian Francis Jeffers (15410255)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/thesis/Cathode_Erosion_and_Propellant_Injection_System_of_a_Low-Voltage_Liquid-Fed_Pulsed_Plasma_Thruster/22761368

Page generated in 0.0146 seconds