Thesis advisor: Matthias M. Waegele / Studying the adsorption and reaction kinetics of surface-bound chemical species, on different metal catalysts or electrodes, is of paramount importance in the development of inhomogeneous catalytic methodology. Our study of the oxidation of CO on platinum was accomplished by designing a thin layer flow cell in an external reflection configuration. A charge-injection circuit was successfully implemented which decreased the time required to charge the double layer in the electrochemical cell. We were able to obtain a signal via Stark shift spectrum, of the adsorbed CO, using the thin layer cell configuration. Additionally, electrochemical impedance spectroscopy was used as a diagnostic tool to assess the effect of electrode geometry, on the voltage response, in the thin layer cell. The coupling of visible light-driven photoexciation with transition metal catalytic plat- forms is emerging as a synthetic strategy to achieve unique reactivity that has previously been inaccessible. One such example is the iridium/nickel-dipyridyl system discovered recently. Characterizing the interactions between the iridium and nickel catalysts, under reaction conditions, is important to develop a better understanding of the system. In order to apply infrared spectroscopic measurement techniques, in-situ, we made modifications to the synthetic scheme by changing the solvent and by utilizing different iridium catalysts for the synthesis of the desired methyl 4-(benzoyloxy)benzoate product. Using our trans- mission infrared setup we effectively demonstrated in-situ product detection of the aryl- ester coupled product. Additionally, after constructing a transient infrared pump-probe setup, we collected preliminary results of the triplet state lifetime of the iridium dye. The surface morphology of copper has been shown to affect the electrochemical reduction of CO2. Using surface-enhanced Raman spectroscopies, the reversible formation of nanoscale metal clusters on a copper electrode was revealed at sufficiently cathodic potentials where we observed the appearance of a new band at 2080 cm-1 corresponding to C≡O adsorbed to undercoordinated copper defect sites. The formation of new undercoordinated sites additionally resulted in the surface enhancement of the Raman scattering which amplified the intensity of the other spectral bands. / Thesis (MS) — Boston College, 2019. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
Identifer | oai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_108657 |
Date | January 2019 |
Creators | Hicks, Robert Paul |
Publisher | Boston College |
Source Sets | Boston College |
Language | English |
Detected Language | English |
Type | Text, thesis |
Format | electronic, application/pdf |
Rights | Copyright is held by the author, with all rights reserved, unless otherwise noted. |
Page generated in 0.0015 seconds