Nonlinear response history analysis is considered as the most accurate analytical tool for estimating seismic response. However, there are several shortcomings in the application of nonlinear response history analysis, resulting from its complexity. Accordingly, simpler approximate nonlinear analysis procedures are preferred in practice. These procedures are called nonlinear static analysis or pushover analysis in general. The recently developed Generalized Pushover Analysis (GPA) is one of them. In this thesis study, GPA is presented and evaluated comparatively with the nonlinear time history analysis and modal pushover analysis. A generalized pushover analysis procedure was developed for estimating the inelastic seismic response of structures under earthquake ground excitations (Sucuoglu and Gü / nay, 2011). In this procedure, different load vectors are applied separately to the structure in the incremental form until the predefined seismic demand is obtained for each force vector. These force vectors are named as generalized force vectors. A generalized force vector is a combination of modal forces, and simulates the instantaneous force distribution on the system when a given response parameter reaches its maximum value during the dynamic response. In this method, the maximum interstory drift parameters are selected as target demand parameters and used for the derivation of generalized force vectors. The maximum value of any other response parameter is then obtained from the analysis results of each generalized force vector. In this way, this procedure does do not suffer from the statistical combination of inelastic modal responses.
It is further shown in this study that the results obtained by using the mean spectrum of a set of ground motions are almost identical to the mean of the results obtained from separate generalized pushover analyses under each ground motion in the set. These results are also very close to the mean results of nonlinear response history analyses.
A practical implementation of the proposed generalized pushover analysis is also developed in this thesis study where the number of pushovers is reduced in view of the number of significant modes contributing to seismic response. It has been demonstrated that the reduced generalized pushover analysis is equally successful in estimating maximum member deformations and member forces as the full GPA under a ground excitation, and sufficiently accurate with reference to nonlinear response history analysis.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12614434/index.pdf |
Date | 01 June 2012 |
Creators | Alici, Firat Soner |
Contributors | Sucuoglu, Haluk |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for METU campus |
Page generated in 0.0546 seconds