Return to search

Control of an Inverted Pendulum Using Reinforcement Learning Methods

In this paper the two reinforcement learning algorithmsQ-learning and deep Q-learning (DQN) are used tobalance an inverted pendulum. In order to compare the two, bothalgorithms are optimized to some extent, by evaluating differentvalues for some parameters of the algorithms. Since the differencebetween Q-learning and DQN is a deep neural network (DNN),some benefits of a DNN are then discussed.The conclusion is that this particular problem is simple enoughfor the Q-learning algorithm to work well and is preferable,even though the DQN algorithm solves the problem in fewerepisodes. This is due to the stability of the Q-learning algorithmand because more time is required to find a suitable DNN andevaluate appropriate parameters for the DQN algorithm, than tofind the proper parameters for the Q-learning algorithm. / I denna rapport används två algoritmer inom förstärkningsinlärning och djup Q-inlärning (DQN), för att balancera en omvänd pendel. För att jämföra dem så optimeras algoritmerna i viss utsträckning genom att testa olika värden för vissa av deras parametrar. Eftersom att skillnaden mellan Q-inlärning och DQN är ett djupt neuralt nätverk (DNN) så diskuterades fördelen med ett DNN. Slutstatsen är att för ett så pass enkelt problem så fungerar Q-inlärningsalgoritmen bra och är att föredra, trots att DQNalgoritmen löser problemet på färre episoder. Detta är pågrund av Q-inlärningsalgoritmens stabilitet och att mer tid krävs för att hitta ett passande DNN och hitta lämpliga parametrar för DQN-algoritmen än vad det krävs för att hitta bra parametrar för Q-inlärningsalgoritmen. / Kandidatexjobb i elektroteknik 2021, KTH, Stockholm

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-307636
Date January 2021
CreatorsKärn, Joel
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2021:147

Page generated in 0.0025 seconds