The thesis deals with electronically adjustable and configurable applications of the modern active elements. In the field there were presented various active elements in applications of the analog filters and oscillators which stem from basic and more or less similar principles of circuit synthesis and design. However, there is not provided study of real behavior in detail and in most cases electronic control of the various parameters in application is not verified. In the precise design of application is very important to identify problematic features and determine how much it influences functionality of the device. In this work several filtering structures based on common and modified synthesis principles (integrator loops) are compared in the view of multifunctionality, configurability, variability, kind of used electronic control and impact of influences of real elements on behavior. There are used standard methods like adjusting of variable transconductance, intrinsic value of current input resistance and not so common method based on variable current gain in design of modified and improved multifunctional filtering circuits. The last method of mentioned control enabled to find quite unique filter which allows continuous electronic change of transfer from band-reject to all-pass filter of the 2nd order without reconnection. It is much simpler than previous and more common integrator loops. Larger part of this work is focused on electronically controllable oscillators mainly on quadrature types. There is presented several very simply and elementary realizations which require minimal number of active and passive elements. There are also slightly or more complicated solutions which remove some drawbacks of mentioned simpler variants. First of all there is given attention on study of real behavior which make obvious different problems with mutual dependence of oscillation condition and oscillation frequency, dependence of produced amplitudes (quadrature types) on parameter which is controlling oscillation frequency, influence of this parameter on oscillation condition, etc. In the framework of this part of the thesis there was introduced a novel modification of current conveyor transconductance amplifier (CCTA) so called current-gain-controlled current conveyor transconductance amplifier (CGCCCTA). Requirements for novel applications in the field of oscillators for newly developed controllable current amplifier and digitally controllable current amplifier (DACA) at the Department of Telecommunication FEEC BUT lead to creation of several chapters of this work where mentioned active elements can be used. The important contribution of this work (for practical approach) is also experimental testing of most of designed circuits and determination of exact design equations and rules which take into account real behavior of circuits and confirm results obtained from experiments.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:233574 |
Date | January 2012 |
Creators | Šotner, Roman |
Contributors | Ondráček, Oldřich, Martínek,, Pravoslav, Petržela, Jiří |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds