Return to search

Cônicas e quádricas : medidas de superfïcies e volumes /

Orientador: Marcelo Reicher Soares / Banca: Valter Locci / Banca: Angela Pereira Rodrigues Moreira / Resumo: A partir de um estudo de cubagem de tora de eucalipto por semelhança de tronco de cone de base elíptica, efetuando os cálculos de volume por semelhança ao tronco de cone de base circular e comprovação de resultado por cálculo diferencial integral, realiza-se um estudo histórico sobre a área do círculo para se chegar à área da elipse pelo desenvolvimento apresentado por Arquimedes nesse assunto. Com apresentação do teorema da medida da área da elipse, demonstrado pela dupla redução ao absurdo e utilização do método da exaustão de Eudoxo. Na sequência, verificamos que esse desenvolvimento matemático foi inspirador para o desenvolvimento do cálculo diferencial integral e para Cavalieri enunciar dois famosos princípios, um para o cálculo de área e outro para o de volume, estes são usados nos próximos cálculos de área da elipse e volume de sólidos elípticos. Os princípios de Cavalieri são teoremas e apresentamos as demonstrações pelo cálculo diferencial integral, também usado como alternativa aos cálculos de volume dos sólidos elípticos / Abstract: From a study of eucalyptus log cube by the similarity of an elliptical cone trunk, performing the volume calculations by resemblance to the circular base cone trunk and verification of the result by integral differential calculus, a historical study is carried out on the area of the circle and to reach the area of the ellipse by the development presented by Archimedes on this subject. Presentation of the theorem of the measurement of the area of the ellipse, demonstrated by the double reduction to the absurd and use of the Eudoxo exhaustion method. It follows that this mathematical development was inspiring for the development of integral differential calculus and for Cavalieri to enunciate two famous principles, one for area calculation and another for volume, which are used in the next area calculations of the ellipse and volume of elliptical solids. The principles of Cavalieri are theorems and the demonstrations were presented by integral differential calculus, also used as an alternative to volume calculations of elliptical solids / Mestre

Identiferoai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000914363
Date January 2019
CreatorsQuagliato, Carlos Augusto Vicente.
ContributorsUniversidade Estadual Paulista "Júlio de Mesquita Filho" Instituto de Biociências, Letras e Ciências Exatas.
PublisherBauru,
Source SetsUniversidade Estadual Paulista
LanguagePortuguese, Portuguese, Texto em português; resumos em português e em inglês
Detected LanguagePortuguese
Typetext
Format95 f. :
RelationSistema requerido: Adobe Acrobat Reader

Page generated in 0.1319 seconds