Les télomères sont des structures nucléoprotéiques protégeant l’extrémité des chromosomes de la dégradation et assurant la réplication de l’ADN terminal. En effet, de nombreuses protéines de réplication sont impliquées dans le maintien de ces structures, comme le complexe RPA (Replication Protein A). Ce complexe très conservé chez les eucaryotes se fixe à l’ADN simple brin et est impliqué dans la réplication, les mécanismes de recombinaison et la réparation de l’ADN. Chez S.pombe, la mutation ponctuelle de la sous-unité RPA1 (Rpa1-D223Y) provoque le raccourcissement des télomères. Dans cette étude, nous montrons que cette mutation provoque l’accumulation de structures aberrantes de haut poids moléculaire aux télomères corrélant avec une présence persistante de Polα aux télomères suggérant une accumulation de structures sur le brin riche en G. Nous avons pu mettre en évidence que la surexpression d’hélicases de la famille Pif1 incluant S.cerevisiae Pif1 et PIF1 humain ainsi que Pfh1 (S.pombe) sont capable de restaurer une longueur de télomères sauvage dans mutant rpa1-D223Y. Ces résultats suggèrent que RPA pourrait empêcher l’accumulation de G4 au niveau du brin retardé télomérique afin de faciliter l’élongation des télomères par la télomérase. De plus, des expériences in vitro ont montré que la mutation correspondante de RPA1 humain réduisait spécifiquement l’affinité de RPA pour le simple brin télomérique humain dans les conditions ou il forme des G4.Enfin l’étude de la stabilité de séquences répétées formant des G4 (minisatellite CEB25), chez S.pombe, a permis de renforcer l’hypothèse selon laquelle RPA pourrait empêcher la formation ou aiderait à la résolution de G4. / Telomeres are nucleoprotein structures that protect chromosome ends from degradation and ensure replication of the terminal DNA. In fact, many of replication proteins are involved in telomere maintenance, like RPA (Replication Protein A). RPA is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in DNA replication, recombination and repair. In S. pombe a mutation in the largest RPA subunit (Rpa1-D223Y) leads to substantial telomere shortening. In this study, we found that the D223Y mutation leads to the accumulation of aberrant secondary structures at telomeres. The presence of these secondary DNA structures correlates with a high association of Polα with telomeres suggesting that this mutation impairs lagging strand (G-rich) telomere replication. Strikingly, heterologous expression of the budding yeast Pif1 known to efficiently unwind G-quadruplex, human PIF1 and Phf1 (homolog of Pif1 in S.pombe) rescue the telomeric length defects of the D223Y cells. Furthermore, in vitro data show that the identical D to Y mutation in human RPA specifically affects its ability to bind G-quadruplex. We propose that RPA prevents the formation of G-quadruplex structures at lagging strand telomeres to facilitate telomerase action at telomeres. Furthermore, the study, in S.pombe, of the stability of G-rich repeat sequences (minisatellite CEB25) as known to form G4 enforce the hypothesis that RPA can prevents the formation of G4 or helps to solve this structure.
Identifer | oai:union.ndltd.org:theses.fr/2015AIXM4013 |
Date | 24 April 2015 |
Creators | Audry, Julien |
Contributors | Aix-Marseille, Coulon, Stéphane |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds