1. The role of calmodulin (CaM) in transmitter release was investigated using liposomes to deliver CaM and monoclonal antibodies against CaM (antiCaM) directly into the frog motor nerve terminal. 2. Miniature endplate potentials (MEPPs) were recorded in a high K+ solution, and effects on transmitter release were monitored using estimates of the quantal release parameters m (number of quanta released), n (number of functional transmitter release sites), p (mean probability of release), and vars p (spatial variance in p). 3. Administration of CaM, but not heat-inactivated CaM, encapsulated in liposomes (1000 units ml-1) produced an increase in m (25%) that was due to an increase in n. MEPP amplitude was not altered by CaM. 4. Administration of antiCaM, but not heat-inactivated antiCaM, in liposomes (50 μl ml-1) produced a progressive decrease in m (40%) that was associated with decreases in n and p. MEPP amplitude was decreased (15%) after a 25 min lag time, suggesting a separation in time between the decreases in quantal release and quantal size. 5. Bath application of the membrane-permeable CaM antagonist W7 (28 μM) produced a gradual decrease in m (25%) that was associated with a decrease in n. W7 also produced a decrease in MEPP amplitude that paralleled the decrease in m. The decreases in MEPP size and m produced by W7 were both reversed by addition of CaM. 6. Our results suggest that CaM increases transmitter release by mobilizing synaptic vesicles at the frog motor nerve terminal.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-20164 |
Date | 01 January 2002 |
Creators | Brailoiu, Eugen, Miyamoto, Michael D., Dun, Nae J. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0017 seconds