Made available in DSpace on 2014-12-17T14:54:59Z (GMT). No. of bitstreams: 1
FabianaTS_TESE.pdf: 1364206 bytes, checksum: 5e147adc9ca5829c7a40ed214ab434d2 (MD5)
Previous issue date: 2011-12-02 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / In this work we use Interval Mathematics to establish interval counterparts for the
main tools used in digital signal processing. More specifically, the approach developed
here is oriented to signals, systems, sampling, quantization, coding and Fourier transforms.
A detailed study for some interval arithmetics which handle with complex numbers
is provided; they are: complex interval arithmetic (or rectangular), circular complex
arithmetic, and interval arithmetic for polar sectors. This lead us to investigate some
properties that are relevant for the development of a theory of interval digital signal processing.
It is shown that the sets IR and R(C) endowed with any correct arithmetic is not
an algebraic field, meaning that those sets do not behave like real and complex numbers.
An alternative to the notion of interval complex width is also provided and the Kulisch-
Miranker order is used in order to write complex numbers in the interval form enabling
operations on endpoints. The use of interval signals and systems is possible thanks to the
representation of complex values into floating point systems. That is, if a number x 2 R is
not representable in a floating point system F then it is mapped to an interval [x;x], such
that x is the largest number in F which is smaller than x and x is the smallest one in F
which is greater than x. This interval representation is the starting point for definitions like
interval signals and systems which take real or complex values. It provides the extension
for notions like: causality, stability, time invariance, homogeneity, additivity and linearity
to interval systems. The process of quantization is extended to its interval counterpart.
Thereafter the interval versions for: quantization levels, quantization error and encoded
signal are provided. It is shown that the interval levels of quantization represent complex
quantization levels and the classical quantization error ranges over the interval quantization
error. An estimation for the interval quantization error and an interval version for
Z-transform (and hence Fourier transform) is provided. Finally, the results of an Matlab
implementation is given / Neste trabalho utiliza-se a matem?tica intervalar para estabelecer os conceitos intervalares
das principais ferramentas utilizadas em processamento digital de sinais. Mais
especificamente, foram desenvolvidos aqui as abordagens intervalares para sinais, sistemas,
amostragem, quantiza??o, codifica??o, transformada Z e transformada de Fourier.
? feito um estudo de algumas aritm?ticas que lidam com n?meros complexos sujeitos ?
imprecis?es, tais como: aritm?tica complexa intervalar (ou retangular), aritm?tica complexa
circular, aritm?tica setorial e aritm?tica intervalar polar. A partir da?, investiga-se
algumas propriedades que ser?o relevantes para o desenvolvimento e aplica??o no processamento
de sinais discretos intervalares. Mostra-se que nos conjuntos IR e R(C), seja
qual for a aritm?tica correta adotada, n?o se tem um corpo, isto ?, os elementos desses
conjuntos n?o se comportam como os n?meros reais ou complexos com suas aritm?ticas
cl?ssicas e que isso ir? requerer uma avalia??o matem?tica dos conceitos necess?rios ?
teoria de sinais e a rela??o desses com as aritm?ticas intervalares. Tamb?m tanto ? introduzido
o conceito de amplitude intervalar complexa, como alternativa ? defini??o cl?ssica
quanto utiliza-se a ordem de Kulisch-Miranker para n?meros complexos afim de que se
escreva n?meros complexos intervalares na forma de intervalos, o que torna poss?vel as
opera??es atrav?s dos extremos. Essa rela??o ? utilizada em propriedades de somas de
intervalos de n?meros complexos. O uso de sinais e sistemas intervalares foi motivado
pela representa??o intervalar num sistema de ponto flutuante abstrato. Isto ?, se um n?mero
x 2 R n?o ? represent?vel em um sistema de ponto flutuante F, ele ? mapeado para
um intervalo [x;x], tal que x ? o maior dos n?meros menores que x represent?vel em F
e x ? o menor dos n?meros maiores que x represent?vel em F. A representa??o intervalar
? importante em processamento digital de sinais, pois a imprecis?o em dados ocorre
tanto no momento da medi??o de determinado sinal, quanto no momento de process?-los
computacionalmente. A partir da?, define-se sinais e sistemas intervalares que assumem
tanto valores reais quanto complexos. Para isso, utiliza-se o estudo feito a respeito das
aritm?ticas complexas intervalares e mostram-se algumas propriedades dos sistemas intervalares,
tais como: causalidade, estabilidade, invari?ncia no tempo, homogeneidade,
aditividade e linearidade. Al?m disso, foi definida a representa??o intervalar de fun??es
complexas. Tal fun??o estende sistemas cl?ssicos a sistemas intervalares preservando as
principais propriedades. Um conceito muito importante no processamento digital de sinais
? a quantiza??o, uma vez que a maioria dos sinais ? de natureza cont?nua e para
process?-los ? necess?rio convert?-los em sinais discretos. Aqui, este processo ? descrito
detalhadamente com o uso da matem?tica intervalar, onde se prop?em, inicialmente, uma
amostragem intervalar utilizando as id?ias de representa??o no sistema de ponto flutuante.
Posteriormente, s?o definidos n?veis de quantiza??o intervalares e, a partir da?, ?
descrito o processo para se obter o sinal quantizado intervalar e s?o definidos o erro de
quantiza??o intervalar e o sinal codificado intervalar. ? mostrado que os n?veis de quantiza??o
intervalares representam os n?veis de quantiza??o cl?ssicos e o erro de quantiza??o
intervalar representa o e erro de quantiza??o cl?ssico. Uma estimativa para o erro de
quantiza??o intervalar ? apresentada. Utilizando a aritm?tica retangular e as defini??es e
propriedades de sinais e sistemas intervalares, ? introduzida a transformada Z intervalar e
s?o analisadas as condi??es de converg?ncia e as principais propriedades. Em particular,
quando a vari?vel complexa z ? unit?ria, define-se a transformada de Fourier intervalar
para sinais discretos no tempo, al?m de suas propriedades. Por fim, foram apresentadas
as implementa??es dos resultados que foram feitas no software Matlab
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/15158 |
Date | 02 December 2011 |
Creators | Santana, Fabiana Trist?o de |
Contributors | CPF:30680581200, http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4790032Z4, Lyra, Aar?o, CPF:67360378400, http://lattes.cnpq.br/2558569782799336, Guerreiro, Ana Maria Guimar?es, CPF:01207607703, http://lattes.cnpq.br/8556144121380013, Reiser, Renata Hax Sander, CPF:42930995068, http://lattes.cnpq.br/3283691152621834, D?ria Neto, Adri?o Duarte, Santiago, Regivan Hugo Nunes |
Publisher | Universidade Federal do Rio Grande do Norte, Programa de P?s-Gradua??o em Engenharia El?trica, UFRN, BR, Automa??o e Sistemas; Engenharia de Computa??o; Telecomunica??es |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0032 seconds