We consider a series of problems regarding quantum Hall edges, focusing on both dynamics and the mathematical structure of edge states. We begin in Chapter 3 with a limiting case of the Laughlin state placed in a very steep confining potential, but which is weak compared to the interactions. We find that the eigenstates have a Jack polynomial structure and an energy spectrum which is extremely different from the well-known Luttinger liquid edge. In Chapter 5 we analyse the inner products of edge state wavefunctions, using an effective description given by a large-N expansion ansatz proposed by J. Dubail, N. Read and E. Rezayi, PRB 86, 245310 (2012). As noted by these authors, the terms in this ansatz can be constrained using symmetry, a procedure we perform to high orders. We then check the conjecture by calculating overlaps exactly for small system sizes and comparing the numerics with our high-order expansion to find excellent agreement. Finally, Chapter 6 considers the behaviour of quantum Hall edges close to the Luttinger liquid fixed point that occurs in the low energy, large system limit. We construct effective Hamiltonians using a local field theory description and then consider the effect of bulk symmetries on this edge. The symmetry analysis produces remarkable simplifications which allow for very accurate descriptions of the low-energy edge physics even relatively far away from the Luttinger liquid fixed point.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:757967 |
Date | January 2018 |
Creators | Fern, Richard |
Contributors | Simon, Steven H. |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:e4a1304e-93bc-4a88-92c1-072908cf19ae |
Page generated in 0.0017 seconds