Return to search

Unconventional Quantum Phases in Strongly Correlated Systems

Thesis advisor: Ying Ran / In this thesis, I investigated and implemented various numerical and simulation methods, including mean field theory, functional renormalization group method (fRG), density matrix renormalization group (DMRG) method etc., to find different quantum phases and quantum phase diagrams on models of correlated electronic systems. I found different phase diagrams with phases such as magnetism, superconductivity. By summarizing the strength and limitations of these methods, I investigated the projected entangled paired states (PEPS) with symmetry quantum number to sharply distinguish phases into crude classes and applied a variation of fast full update (FFU) prototype[58] to simulate different phases numerically. This method provides a promising, powerful and efficient way to simulate unconventional quantum phases and quantum phase diagrams in correlated electronic systems. / Thesis (PhD) — Boston College, 2016. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_106990
Date January 2016
CreatorsYe, Bing
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author, with all rights reserved, unless otherwise noted.

Page generated in 0.0017 seconds