Plasmonic structures with nanometer scale gaps provide localized field enhancement and allow for engineering of the optical response, which is well described by conventional classical models. For subnanometer scale gaps, quantum effects and nonlocal effects become important and classical electromagnetics fail to describe the plasmonic coupling response. Coupled plasmonic system of gold nanoparticles on top of thin gold film separated with self-assembled monolayers (SAMs) provides a convenient geometry to experimentally explore plasmonic features in subnanometer scale gaps. However, the surface roughness of the thin metal film can significantly influence the plasmonic coupling properties. In this dissertation, I suggest modifying the coupled nanoparticles-film structures by using ultraflat thin metal films. Using these structures, I investigated the far-field optical response for gap size variations by dark field scattering measurements. A red-shift of the plasmon resonance wavelength was observed by reducing the gap width. However, I did not observe the previously reported saturation trend of the resonance shift for subnanometer scale gaps. I attribute the difference to surface roughness effects in past works since as they were not present in my studies with ultraflat films.
To study the near-field enhancement in subnanometer scale gaps, I used third harmonic generation as a method that is highly sensitive (as the third power) to the local field intensity. The onset of the quantum tunneling regime was determined for gap thicknesses of 0.51 nm, where there was a sudden drop in the third harmonic when the gap width decreases from 0.69 nm to 0.51 nm. The experimental observations were consistent with analytical calculations that applied the quantum-corrected model for SAM separating two gold regions. In comparison to the gap without SAMs in which the onset of the tunneling regime was reported at 0.31 nm, the onset of tunneling across the gap with SAM occurred for larger gaps. This was an expected outcome because the material in the gap reduced the barrier height to tunneling.
Furthermore, I investigated the wavelength dependence of the third harmonic generation for the gold plasmonic system to determine the role of the interband transitions in the nonlinear response of gold. Past works reported a strong wavelength dependence of the nonlinear response of gold for the fundamental wavelength at about 550 nm, attributed to the interband transitions between the 5d to 6s-6p bands. However, the roles of the interband transitions and wavelength-dependent field enhancement in the nonlinear response of gold was not investigated. In this dissertation, results showed the third harmonic generation enhanced by an order of magnitude by the interband transition (as compared to the non-resonant case). In my research I also used an analytic model for the dielectric function of gold in which contributions of the interband transitions were considered. This model was also consistent with the experimental observations. / Graduate / 0752 / 0544 / Ghazal.hajisalem@gmail.com
Identifer | oai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/7551 |
Date | 19 September 2016 |
Creators | Hajisalem, Ghazal |
Contributors | Gordon, Reuven |
Source Sets | University of Victoria |
Language | English, English |
Detected Language | English |
Type | Thesis |
Rights | Available to the World Wide Web |
Page generated in 0.0025 seconds