Return to search

An extension of the Deutsch-Jozsa algorithm to arbitrary qudits

Recent advances in quantum computational science promise substantial improvements in the speed with which certain classes of problems can be computed. Various algorithms that utilize the distinctively non-classical characteristics of quantum mechanics have been formulated to take advantage of this promising new approach to computation. One such algorithm was formulated by David Deutsch and Richard Jozsa. By measuring the output of a quantum network that implements this algorithm, it is possible to determine with N 1 measurements certain global properties of a function f(x), where N is the number of network inputs. Classically, it may not be possible to determine these same properties without evaluating f(x) a number of times that rises exponentially as N increases. Hitherto, the potential power of this algorithm has been explored in the context of qubits, the quantum computational analogue of classical bits. However, just as one can conceive of classical computation in the context of non-binary logic, such as ternary or quaternary logic, so also can one conceive of corresponding higher-order quantum computational equivalents.<p>This thesis investigates the behaviour of the Deutsch-Jozsa algorithm in the context of these higher-order quantum computational forms of logic and explores potential applications for this algorithm. An important conclusion reached is that, not only can the Deutsch-Jozsa algorithms known computational advantages be formulated in more general terms, but also a new algorithmic property is revealed with potential practical applications.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-07262007-105041
Date01 August 2007
CreatorsMarttala, Peter
ContributorsPlyukhin, Alexander V., Koustov, Alexandre V. (Sasha), Dutchyn, Christopher, Dick, Rainer, Bradley, Michael P., Rangacharyulu, Chilakamarri (Chary)
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-07262007-105041/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0022 seconds