This thesis identifies problems with the current operation proposals for Si:P based solid-state quantum computing architectures and outlines realistic alternatives as an effective fix. The focus is qubit read-out and robust two-qubit control of the exchange interaction in the presence of both systematic and environmental errors. We develop a theoretical model of the doubly occupied D- read-out state found in Si:P based nuclear spin architectures. We test our theory by using it to determine the binding energy of the D- state, comparing to known results. Our model can be used in detailed calculations of the adiabatic read-out protocol proposed for these devices. Regarding this protocol, preliminary calculations suggest the small binding energy of the doubly occupied read-out state will result in a state dwell-time less than that required for measurement using a single electron transistor (SET). We propose and analyse an alternative approach to single-spin read-out using optically induced spin to charge transduction, showing that the top gate biases required for qubit selection are significantly less than those demanded by the adiabatic scheme, thereby increasing the D+D- lifetime. Implications for singlet-triplet discrimination for electron spin qubits are also discussed.
Identifer | oai:union.ndltd.org:ADTP/245619 |
Date | January 2008 |
Creators | Testolin, Matthew J. |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Terms and Conditions: Copyright in works deposited in the University of Melbourne Eprints Repository (UMER) is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only, download, print, and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works., Open Access |
Page generated in 0.0025 seconds