Return to search

The Development of an Adaptable Surface Modification Architecture for Microfluidic Applications

A framework to compartmentalize microfluidic surfaces was developed. Substrates are separated from surface modifying agents with an intermediate binding layer (IBL). The IBL is comprised of two compounds which bind together using a non-covalent interaction; a host compound is immobilized on the substrate, and a guest compound is conjugated to the surface modifying agent. The primary benefit of the IBL architecture is adaptability: substrates and surface compounds become modular components with standard connectors.

Beta-Cyclodextrin (BCD) and adamantane (AD) were selected as the model immobilized host and conjugated guest, respectively. A quartz crystal microbalance (QCM) was assembled and developed to study the BCD/AD complexation interaction. Kinetic, thermodynamic, and Langmuir isotherm data were reported for AD-derivatives binding with immobilized BCD. QCM was also used to investigate neutravidin (NA) binding onto AD-PEG and AD-PEG-biotin coatings immobilized to t-BCD surfaces. QCM was an effective platform to validate the use of BCD/AD as the IBL interaction prior to microfluidic implementation.

The BCD/AD IBL was successfully demonstrated in a microfluidic environment. Microfluidic devices were fabricated using the soft-lithographic technique. Adapted surface modifications were visualized using fluorescein isothiocyanate (FITC) probes within the microfluidic device and detected using confocal laser scanning microscopy (CLSM). Surface modifications were applied to demonstrate the fundamental functions of surface passivation, specific binding, and visualization using the IBL architecture. Consistent with QCM data, AD-PEG passivated the surface and AD-PEG-biotin specifically bound NA to the BCD surface. Thus, an adaptable surface modification architecture for microfluidic applications was developed and demonstrated.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/11246
Date01 August 2008
CreatorsPoon, Kevin Hing-Nin
ContributorsCheng, Yu-Ling
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis
Format17788655 bytes, application/pdf

Page generated in 0.0021 seconds