<p>A satellite in orbit about a planet needs some means of attitude control in order to, for instance, get as much sun into its solar-panels as possible. It is easy to understand that, for example, a spy satellite has to point at a certain direction without the slightest trembling to get a photo of a certain point on the earth. This type of mission must not exceed an error in attitude of more then about 1/3600 degrees. But, since high accuracy equals high cost, it is also easy to understand why a research satellite measuring solar particles (or radiation) in space does not need high accuracy at all. A research vessel of this sort can probably do with less accuracy then 1 degree. </p><p>The first part of this report tries to explain some major aspects of satellite space-flight. It continues to focus on the market for small satellites, i.e. satellites weighing less than 500 kg. The second part of this final thesis work deals with the development of a program that simulates the movement of a satellite about a large celestial body. The program, called AOSP, consists of user-definable packages. Sensors and estimation filters are used to predict the satellites current position, velocity, attitude and angular velocity. The purpose of the program, which is written in MATLAB, is to easily determine the pointing accuracy of a satellite when using different sensors and actuators.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-1407 |
Date | January 2002 |
Creators | Elfving, Jonas |
Publisher | Linköping University, Department of Electrical Engineering, Institutionen för systemteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Relation | LiTH-ISY-Ex, ; 3295 |
Page generated in 0.0031 seconds