Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-05-05T13:43:03Z
No. of bitstreams: 1
2012 - Diego Campana Loureiro.pdf: 6292509 bytes, checksum: 5485d752378d7d1a430cdb431c98ed44 (MD5) / Made available in DSpace on 2017-05-05T13:43:03Z (GMT). No. of bitstreams: 1
2012 - Diego Campana Loureiro.pdf: 6292509 bytes, checksum: 5485d752378d7d1a430cdb431c98ed44 (MD5)
Previous issue date: 2012-03-22 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / The objective of this study was to evaluate the influence of the plant management and soil vegetation cover in the microbial biomass and labile soil organic matter (SOM) levels, with the possibility of prediction about the fate of soil organic carbon in the Atlantic Forest biome. We studied different crop areas under organic cultivation of vegetables (intensive cultivation, minimum tillage and crop rotation), grazing areas of Paspalum notatum (PAS); remaining fragments of Atlantic Forest (RMA), and degraded soil areas (ADR). Three composite soil samples were collected in each area to a depth of 0-10 cm in a Red Yellow Podzolic soil. In each sample we determined the levels of C and N associated with the SMB, labile C, labile N, free light fraction and intra-aggregate SOM, microbial respiration, microbial quotient and metabolic quotient. It was also determined mineral fractions as sand, silt, and clay, gravimetric moisture content, as well as the chemical attributes (Ca2+, Mg2+, P2O5, K+, organic C, total N, Al3+, CEC and pH in water). The pasture area had the highest accumulation of carbon in the soil microbial biomass (SMB) with 384 mg C kg-1 soil, about 35% above the level seen in the remaining Atlantic Forest fragments, which was attributed to the intense development and cycling of the root system of grasses in the upper soil layer, a horizon with higher concentration of microorganisms. About 2% of total organic C is stored in the SMB in pasture areas. The introduction of agricultural practices in farming system considerably affected the levels of SMB, showing reduction average of 30% compared to the remaining forest fragments. The metabolic quotient (qCO2) indicated losses of soil C for the managed areas with crops, and among the different systems of agriculture, greater losses of C were observed in areas managed with short cycle crops, with frequent use of plowing and harrowing, prompting the search for management systems that minimize soil disturbance and prioritize the maintenance of vegetation cover. The degraded soil area was the environment that contributed the most to the separation of the multivariate groups, showing the area of higher differences for the microbial activity and SOM levels. The attributes with higher importance in the multivariate grouping were clay content and the microbial C/N ratio showing the significance of the use of SMB and soil texture attributes in distinguishing between different crop management systems and soil vegetation cover, showing the prediction potential for the fate of soil organic carbon. / O objetivo do estudo foi avaliar a influ?ncia do manejo fitot?cnico e da cobertura vegetal do solo na biomassa microbiana e fra??es l?beis da mat?ria org?nica do solo (MOS), com a possibilidade de progn?stico sobre o destino do carbono org?nico do solo em um sistema integrado de produ??o agroecol?gica. Foram estudadas diferentes ?reas de lavoura sob cultivo org?nico de hortali?as (cultivo intensivo, cultivo m?nimo e cultivo rotacionado); ?reas de pastagens de Paspalum notatum (PAS); remanescentes florestais da Mata Atl?ntica (RMA); e ?reas degradadas (ADR). Tr?s amostras compostas de solo foram coletadas em cada ?rea a uma profundidade de 0-10 cm em Argissolo Vermelho-Amarelo. Em cada amostra determinou-se os teores de C e N associados ? BMS, C e N l?beis, fra??o leve livre e intra-agregado da MOS, respira??o microbiana, quociente microbiano e quociente metab?lico. Determinaram-se tamb?m as fra??es granulom?tricas areia, silte, argila, umidade gravim?trica, bem como os atributos qu?micos (Ca2+, Mg2+, P2O5, K+, C org?nico, N total, Al3+, CTC e pH em ?gua). A ?rea de pastagem apresentou o maior ac?mulo de carbono da biomassa microbiana do solo (BMS), com 384 mg C kg-1 solo, cerca de 35 % acima dos valores observados nos remanescentes florestais da Mata Atl?ntica, o que foi atribu?do ao intenso desenvolvimento e ciclagem do sistema radicular das gram?neas forrageiras na camada superior do solo, regi?o que ocorre maior concentra??o de microrganismos. Cerca de 2 % do total de Corg org?nico est? estocado na BMS nas ?reas de pastagens. A introdu??o de pr?ticas agr?colas no sistema de lavoura afetou consideravelmente os teores de BMS-C, apresentando redu??o m?dia de 30% com rela??o aos remanescentes florestais. O quociente metab?lico (qCO2) indicou perdas de C do solo para as ?reas manejadas com culturas agr?colas, e dentre os diferentes sistemas de cultivo agr?cola, maiores perdas de C foram observados nas ?reas manejadas com culturas de ciclo curto, com uso freq?ente de ara??o e gradagem, alertando para a procura de sistemas de manejo que minimizem o revolvimento do solo e priorizem a manuten??o da cobertura vegetal. A ?rea degradada foi o ambiente que mais contribuiu para a separa??o dos grupos de an?lise multivariada, mostrando ser a ?rea mais discrepante em rela??o ? atividade microbiana e teores de MOS. As vari?veis com maior peso na forma??o dos agrupamentos foram o teor de argila e a rela??o C/N microbiana, mostrando a import?ncia do uso da BMS e atributos granulom?tricos do solo na distin??o de diferentes sistemas de manejo fitot?cnico e cobertura vegetal do solo, ampliando a possibilidade de progn?stico sobre o destino do carbono org?nico do solo.
Identifer | oai:union.ndltd.org:IBICT/oai:localhost:jspui/1592 |
Date | 22 March 2012 |
Creators | Loureiro, Diego Campana |
Contributors | De-Polli, Helv?cio, Ceddia, Marcos Bacis, Ribeiro, Raul de Lucena Duarte, Berbara, Ricardo Luis Louro, Aquino, Adriana Maria de, Simas, Felipe Nogueira Bello |
Publisher | Universidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Fitotecnia, UFRRJ, Brasil, Instituto de Agronomia |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ |
Rights | info:eu-repo/semantics/openAccess |
Relation | 9 REFER?NCIAS BIBLIOGR?FICAS ADINSOFT. 2004. XLSTAT-PLS 1.8. Statistical software to MS Excel. AJTAY, G.L., KETNER, P., DUVIGNEAUD, P. Terrestrial primary production and phytomass. In: Bolin, B., Degens, E.T., Kempe, S., Ketner, P. (Eds.), The Global Carbon Cycle. John Wiley & Sons, Chichester, 1979. 129?181p. ALBUQUERQUE FILHO, M. R. SCHAEFER, C. E. G. R.; SIMAS, F. N. B.; COSTA, L. M. DIAS, J. R.; PEREIRA, V. V.; COELHO, L. M. Caracter?sticas F?sicas e Qu?micas de Solos sobre Rochas Vulc?nicas na Pen?nsula Keller, Ant?rtica Mar?tima, Vi?osa, 2004. 27-34p. ALMEIDA, D. L. de; RIBEIRO, R. L. D.; GUERRA, J. G. M. Sistema de Produ??o Agroecol?gico (?Fazendinha? Agroecol?gica KM 47). Agricultura Ecol?gica. 2a Simp?sio de Agricultura Org?nica e 1a Encontro de Agricultura Org?nica; Edmilson Ambrosano (coord.).- Gua?ba: Agropecu?ria, 1999. 398p. ALVES, B. J. R.; SANTOS, J. C. F.; URQUIAGA, S.; BODDEY, R. M. M?todos de determina??o do nitrog?nio em solo e planta. In: HUNGRIA, M.; ARA?JO, R. S. (Ed.). Manual de m?todos empregados em estudos de microbiologia agr?cola. Bras?lia, DF: EMBRAPA-SPI, 1994. p. 449-469. (EMBRAPA-CNPAF. Documentos, 46). ANDERSON, J. P. E.; DOMSCH, K. H. Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol. Fertil. Soil, 1: 81-89, 1985. ANDERSON, T. H.; DOMSCH, K. H. Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol. Biochem., 22:251-255, 1990. ANDERSON, T. H.; DOMSCH, K.H. The metabolic quocient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol. Biochem., 25:393-395, 1993. ANISIMOV, O.A. Impact of climate change on heating and air-conditioning. Meteorology and Hydrology. 6, 10-17 (1999). ARA?JO, A. S. F.; MONTEIRO, R. T. R.; ABARKELI, R. B. Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere, Oxford, v. 52, p. 799-804, 2003. ARA?JO, S.P. Atributos biol?gicos do solo sob diferentes coberturas vegetais amostrados em duas esta??es do ano numa topossequ?ncia no Noroeste Fluminense ? RJ. Campos dos Goytacazes, Universidade Estadual do Norte Fluminense, 2003. 51p. (Tese de Mestrado). ARA?JO, R.; GOEDERT, W.J.; LACERDA, M.P.C. Qualidade de um solo sob diferentes usos e sob cerrado nativo. Revista Brasileira de Ci?ncia do Solo, v.31, p.1099-1108, 2007. ARCTIC CLIMATE IMPACT ASSESSMENT (ACIA). Impacts of a Warming Arctic: Arctic Climate Impact Assessment (Cambridge Univ. Press, Cambridge, 2004). 86 ARIGONY NETO, J. Determina??o e interpreta??o de caracter?sticas glaciol?gicas e geogr?ficas com sistema de informa??es geogr?ficas na ?rea Ant?rtica Especialmente Gerenciada Ba?a do Almirantado, Ilha Rei George, Ant?rtica. Tese de Mestrado. UFRGS. 2001. 84p. BAKER, A. D.; ZUBERER, D. A.; WILDING, L. P. Inconsistence in methods for measuring bioavaliable carbon and microbial biomass in soil from the NRCS wet soil monitoring project, An International Workshop on Assessment Methods for soil C Pools, 2-5 nov. Ohio Univ./USDA, Abstract and Program. p.11, 1998. BALOTA, E. L.; COLOZZI-FILHO, A.; ANDRADE, D.S.; HUNGRIA, M. Biomassa microbiana e sua atividade em solos sob diferentes sistemas de preparo e sucess?o de culturas. Revista Brasileira de Ci?ncia do Solo, v.22, p.641-650, 1998. BARRETO, P.A.B.; GAMA-RODRIGUES, E.F.; GAMA-RODRIGUES, A.C.; BARROS, N.F.; FONSECA, S. Atividade microbiana, carbono e nitrog?nio da biomassa microbiana em planta??es de eucalipto, em seq??ncia de idades. R. Bras. Ci. Solo, 32:611-619, 2008. BAYER, C. & MIELNICZUK, J. Din?mica e fun??o da mat?ria org?nica. In: SANTOS, G.A.; SILVA, L.S.; CANELLAS, L.P.; CAMARGO, F.A.O., eds. Fundamentos da mat?ria org?nica do solo: Ecossistemas tropicais e subtropicais. 2.ed. Porto Alegre, Metr?pole, 2008. p.7-18. BEKKU, Y.; KUME, A.; NAKATSU, T.; MASUZAWA, T.; KANDA, H.; KOIZUMI, H. Microbial biomass in relation to primary succession on Arctic deglaciated moraines. Polar Biosci., 12, 47-53, (1999). BERNOUX, M.; VOLKOFF, B. Soil carbon stock in soil ecoregions of Latin America. In: LAL, R.; CERRI, C.C.; BERNOUX, M.; ETCHEVERS, J. & CERRI, C.E.P. Carbon sequestration in soils of Latin America. New York, Haworth, 2006. p.65-75. BEYER L.; PINGPANK K.; B?LTER M.; SEPPELT R.D. Soil organic matter storage in cold soils of coastal eastern Antarctica (Casey Station, Wilkes Land). In: J.R. Kimble (ed.) Cryosols. Springer?Verlag, Heidelberg: 509?524 (2004). BEYER, L.; BOCKHEIM, J.; CAMPBELL, I.B.; CLARIDGE, G.G.C. Properties, genesis and global significance of Antarctic Cryosols. Antarctic Science, (1999) 11: 387?398. BILLINGS, W. D. 1987. Carbon balance of Alaskan tundra and taiga ecosystems: past, present and future. Quaternary Science Reviews 6:165?177. BLUME H.?P., KUHN D. and B?LTER M. Soils and Soilscapes. In: L. Beyer and M. B?lter (eds) Geoecology of Antarctic Ice?free Coastal Landscapes. Ecological Studies 154, Springer, Berlin: 91?113 (2002). BOCKHEIM, J.G.; TARNOCAI, C. Recognition of cryoturbation for classifying permafrost-affected soils. Geoderma 81, 281?293 (1998). BOLTER, M. Microbial activity in soils from Antarctica (Casey Station, Wilkes Land). Proc. NIPR Symp. Polar Biol., 2, 146-153 (1989). 87 BOLTER, M. Estimations of microbial biomass by direct and indirect methods with special respect to monitoring programs. Proc. NIPR Symp. Polar Biol., 7, 198-208, (1994). BRASIL ? MAPA (Minist?rio da Agricultura Pecu?ria e Abastecimento) 2009. Legisla??o para os sistemas org?nicos de produ??o. SINAGRI ? Biblioteca Nacional de Agricultura, Bras?lia, 195p. BREMNER, J. M.; MULVANEY, C. S. Nitrogen total. In: PAGE, A. L., ed. Methods of soil analysis. Part 2. 2. ed. Madison: Soil Science Society of America, 1982. p. 595-624. BROOKES, D. C. The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, Berlin, v. 19, p. 269-279, 1995. BROOKES, P. C.; LANDMAN, A.; PRUDEN, G.; JENKINSON, D. S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, Oxford, v. 17, p. 837-842, 1985. BROOKES, P. C.; POWLSON, D. S.; JENKINSON, D. S. Measurement of microbial biomass phosphorus in soil. Soil Biology & Biochemistry, Oxford, v. 14, n. 4, p. 319-329, 1982. BROWN, J., HINKEL, K., NELSON, F.E., 2000. The circumpolar active layer monitoring (CALM) program: research designs and initial results. Polar Geography 24, 165?258. CAMPBELL, I.B.; CLARIDGE, G.G.C. Landscape evolution in Antarctica. Earth-Sci. Rev., 25 (1988), pp. 345?353. CAMPBELL, I.B.; CLARIDGE, G.G.C. Antarctica: Soils, Weathering Processes and Environment. Amsterdam: Elsevier Publisher. (1987) 368 pp. CARDOSO, E. L; SILVA, M. L. N; MOREIRA, F. M. de S; CURI, N. Atributos biol?gicos indicadores da qualidade do solo em pastagem cultivada e nativa no Pantanal. Pesquisa Agropecu?ria Brasileira, v. 44, n. 6, p. 631-637, 2009. CARNEIRO, M.A.C.; ASSIS, P.C.R.; MELO, L.B. de C.; PEREIRA, H.S.; PAULINO, H.B.; SILVEIRA NETO, A.N. da. Atributos bioqu?micos em dois solos de cerrado sob diferentes sistemas de manejo e uso. Pesquisa Agropecu?ria Tropical, v.38, p.276-283, 2008. CARTER, M. R. Microbial biomass as an index for tillage-induced changes in soil biological properties. Soil Tillage Research, Amsterdam, v. 7, p. 29-40, 1986. CARVALHO, J.L.N.; AVANZI, J.C.; SILVA, M.L.N.; MELLO, C.R.; CERRI, C.E.P. Potencial de sequestro de carbono em diferentes biomas do Brasil. R. Bras. Ci. Solo, 34:277-289, 2010. CATTELAN, A. J.; VIDOR, C. Flutua??es na biomassa, atividade e popula??o microbiana do solo em fun??o de varia??es ambientais. Revista Brasileira de Ci?ncia do solo, Campinas, v.14, n.2, p. 133-142, 1990. 88 CERRI, C.C.; BERNOUX, M.; CERRI, C.E.P. & LAL, R. Challenges and opportunities of soil carbon sequestration in Latin America. In: LAL, R.; CERRI, C.C.; BERNOUX, M.; ETCHEVERS, J. & CERRI, C.E.P. Carbon sequestration in soils of Latin America. New York, Haworth, 2006a. p.41-47. CERRI, C.E.P.; CERRI, C.C.; BERNOUX, M.; VOLKOFF, B. & ROND?N, M.A. Potential of soil carbon sequestration in the Amazonian Tropical Rainforest. In: LAL, R.; CERRI, C.C.; BERNOUX, M.; ETCHEVERS, J. & CERRI, C.E.P. Carbon sequestration in soils of Latin America. New York, Haworth, 2006b. p.245-266. CERRI, C.E.P.; EASTER, M.; PAUSTIAN, K.; KILLIAN, K.; COLEMAN, K.; BERNOUX, M.; POWLSON, D.S.; BATJES, N.H.; MILNE, E. & CERRI, C.C. Predicted soil organic carbon stocks and changes in the Brazilian Amazon between 2000 and 2030. Agric. Ecosyst. Environ., 122:58-72 (2007). CHAPIN, F. S. III et al. Role of land-surface changes in Arctic summer warming. Science 310, 657?660 (2005). CHENG, W. & VIRGINIA, R.A. Measurement of microbial biomass in Arctic tundra soils using fumigation-extraction and substrate-induced respiration procedures.- Soil Biol. Biochem. 25: 135-141 (1993). CHRISTENSEN, B. T. Organic matter in soil ? structure, function and turnover. DIAS Report no. 30. Plant production, Tjele. p. 95, 2000. COWAN, D.A., MAMAIS, A., SHEPPARD, D., & RUSSELL, N. Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. EXTREMOPHILES 6(5):431-436 (2002). DAVIDSON, E. A.; JANSSENS, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165-173 (2006). DEMATT?, J.L.I. Manejos de solos ?cidos dos tr?picos ?midos ? Regi?o Amaz?nica. Campinas: Funda??o Cargill, 1988. 215p. DE-POLLI, H.; GUERRA, J. G. M. C, N e P na Biomassa Microbiana do Solo. In: Fundamentos da Mat?ria Org?nica do Solo. Ed. SANTOS, G. de A. & CAMARGO, F. A. de O. Porto Alegre: Genesis, 1999. p. 389 - 411. DIXON, R.K.; BROWN, S.; HOUGHTON, R.A.; SOLOMON, A.M.; TREXLER, M.C. & WISNIEWSKI, J. Carbon pools and flux of global forest ecosystems. Science, 263:185-190, 1994. DUXBURY, J. M.; SMITH, M. S; DORAN, J. W.; JORDAN, C.; SZOTT, L.; VANCE, E. Soil organic matter as a source and sink of plant nutrients. In: COLEMAN, D. C.; OADES, J. M.; UEHARA, G. (Ed.). Dynamics of soil organic in tropical ecosystems. Honolulu: University of Hawaii Press, 1989. p. 33-67. 89 EMBRAPA. Manual de M?todos de Analise de Solo. Centro Nacional de Pesquisa de Solos. 2 Edi??o. Revista atual. Rio de Janeiro, 212 p. 1997. ESWARAN, H.; van den BERG, E. & REICH, P. Organic carbon in soils of the word. Soil Sci. Soc. Am. J., 57:192-194, 1993. FLORINSKY, I.V.; EILERS, R.G.; MANNING, G.; FULLER, L.G. Prediction of soil properties by digital terrain modelling. Environmental Modelling and Software 17, 295? 311 (2002). FLORINSKY, I.V.; KURYAKOVA, G.A. Determination of grid size for digital terrain modelling in landscape investigations?exemplified by soil moisture distribution at a micro-scale. International Journal of Geographical Information Science 14, 815? 832 (2000). FLORINSKY, I.V.; MCMAHONB, S.; BURTONC, D.L. Topographic control of soil microbial activity: a case study of denitrifiers. Geoderma 119 (2004) 33?53. FRANCHINI, J.C.; CRISPINO, C.C.; SOUZA, R.A.; TORRES, E.; HUNGRIA, M. Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in Southern Brazil. Soil and Tillage Research, v.92, p.18-29, 2007. GAMA-RODRIGUES, E. F. Biomassa microbiana e ciclagem de nutrientes. In: SANTOS, G. A.; CAMARGO, F. A. O., eds. Fundamentos da mat?ria org?nica do solo-Ecossistemas tropicais e subtropicais. Porto Alegre, G?nesis, 1999. p. 227-244. GAMA-RODRIGUES, E.F. da; GAMA-RODRIGUES, A.C. da. Biomassa microbiana e ciclagem de nutrientes. In: SANTOS, G. de A.; SILVA, L.S. da; CANELLAS, L.P.; CAMARGO, F.A. de O. (Ed.). Fundamentos da mat?ria org?nica do solo: ecossistemas tropicais e subtropicais. 2.ed. rev. e atual. Porto Alegre: Metr?pole, 2008. p.159-170. GAMA-RODRIGUES, E.F.; BARROS, N.F.; GAMARODRIGUES, A.C. & SANTOS, G.A. Nitrog?nio, carbono e atividade da biomassa microbiana do solo em planta??es de eucalipto. R. Bras. Ci. Solo, 29:393-901, 2005. GOLDEN SOFTWARE, Surfer V 7.02. Surface Mapping System, 2000. Colorado USA. GON?ALVES, A. S. ; MONTEIRO, M. T. ; GUERRA, J G M ; COSTANTINI, A. O. ; DE-POLLI, H. Biomassa microbiana em amostras umedecidas ap?s secagem ao ar de solos de toposeq??ncia de pastagens. Ciencia del Suelo, v. 25, p. 81-87, 2007. GRUBER, N. et al. in Toward CO2 Stabilization: Issues, Strategies, and Consequences (eds Field, C. B. & Raupach, M. R.) 45?76 (Island Press, Washington, DC, 2004). HASSINK, J. Decomposition rate constants of size and density fractions of soil organic matter. Soil Sci. Soc. Am. J., 59:1631-1635, 1995. HOLDING, A.J.; COLLINS, V.G.; FRENCH, D.D.; D'SYLVA, B.T.; BAKER, J.H. Relationship between viable bacterial counts and site characteristics in tundra. in: HOLDIN, A.J.; HEAL, O.W.; MACLEAN Jr, S.F.; Flanagan, P.W. (Eds.), Proceedings of the 90 Microbiology, Decomposition and Invertebrate Working Groups Meeting, Soil Organisms and Decomposition in Tundra, Stockholm (1974), pp. 49?64. HOFSTEE, E.H.; BALKS, M.R.; PETCHEY, F.; CAMPBELL, D.I. Soils of Seabee Hook, Cape Hallett, northern Victoria Land, Antarctica. Antarctic Science 18 (4), 473?486 (2006). IPCC 2007 Summary for policymakers. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC 2007a. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. IPCC, 2001. In: HOUGHTON, J.T., DING, Y., GRIGGS, D.J., NOGUER, M., VAN DER LINDEN, P.J., XIAOSU, D. (Eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. ISERMEYER, H., 1952: Eine einfache Methode zur Bestimmung der Bodenatmung und der Carbonate im Boden. Zeitschrift fur Pflanzenernahrung und Bodenkunde, 56: 26?38. JANZEN, H. H. Carbon cycling in earth systems?a soil science perspective. Agriculture, Ecosystems and Environment 104, 399?417 (2004). JANZEN, H.H.; CAMPBELL, C.A.; BRANDT, S.A. Lightfraction organic matter in soils from long-term crop rotations. Soil Sci. Soc. Am. J., 56:1799-1806, 1992. JENKINSON, D. S.; LADD, J. N. Microbial biomass in soil: Measurement and Turnover. In: PAUL, E. A.; LADD, J. N., eds. Soil Biochemistry. New York, Marcel Dekker, 1981. v.5. p.415-471. JENKINSON, D. S.; POWLSON, D. S. The effects of biocidal treatments on metabolism in soil. V. Method for measuring soil biomass. Soil Biol. Biochem., 8:209-213, 1976. KASCHUK, G.; ALBERTON, O.; HUNGRIA, M. Quantifying effects of different agricultural land uses on soil microbial biomass and activity in Brazilian biomes: inferences to improve soil quality. Plant Soil (2011) 338:467?481. KASCHUK, G.; ALBERTON, O.; HUNGRIA, M. Three decades of soil microbial biomass studies in Brazilian ecosystems: Lessons learned about soil quality and indications for improving sustainability. Soil Biology & Biochemistry 42 (2010) 1?13. KIMBLE, J.M (ed). Cryosols, Permafrost-affected soils. Srpringer-Verlag. 725p. 2004 KNORR, W.; PRENTICE, I. C.; HOUSE, J. I.; HOLLAND, E. A. Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298?-301 (2005). 91 KOZERETSKA, I.A.; PARNIKOZA, I.YU.; MUSTAFA, O.; TYSCHENKO, O.V.; KORSUN, S.G.; CONVEY, P. Development of Antarctic herb tundra vegetation near Arctowski station, King George Island. Polar Science 3 (2010) 254-261. KUHN, D. Genese, Okologie und Soziologie einer Bodengesellschaft in einem Periglazialgebiet der King-George-In sel (West-Antarktis). Schriftenreihe Institut fur Pflanzenernahrung und Bodenkunde Universitat Kiel, 40: 1?173 (1997). LAL, R. Soil carbon sequestration impacts on global climate change and food security. Science, 304:1623-1627, 2004. LAL, R. Soil carbon sequestration in Latin America. In: LAL, R.; CERRI, C.C.; BERNOUX, M.; ETCHEVERS, J. & CERRI, C.E.P. Carbon sequestration in soils of Latin America. New York, Haworth Press, 2006. p.49-64. LAURANCE, W.F.; COCHRANE, M.A.; BERGEN, S.; FEARNSIDE, P.M.; DELAM?NICA, P.; BARBER, C.; D?ANGELO, S. & FERNANDES. T. The future of Brazilian Amazon. Science, 291:438-439, 2001. LAVIAN, I.L.; VISHNEVETSKY, S.; BARNESS, G.; STEINBERGER, Y. Soil microbial community and bacterial functional diversity at Machu Picchu, King George Island, Antarctica. Polar Biology (2001) 24: 411?416. LOUREIRO, D.C.; DE-POLLI, H.; CEDDIA, M.B.; AQUINO, A.M. Spatial variability of microbial biomass and organic matter Labile pools in a haplic planosol soil. Bragantia, Campinas, v. 69, Suplemento, p. 85-95, 2010. MARCHIORI J. R. M.; MELO, W. J. Carbono, carbono da biomassa microbiana e atividadeenzim?tica em um solo sob mata natural, pastagem e cultura do algodoeiro. Revista Brasileira de Ci?ncia do Solo, v. 23, n. 257-263, 1999. MENDON?A, E.S.; SCALA, N.L. Jr.; PANOSSO, A.R.; SIMAS, F.N.B.; SCHAEFER, C.E.G.R. Spatial variability models of CO2 emissions from soils colonized by grass (Deschampsia antarctica) and moss (Sanionia uncinata) in Admiralty Bay, King George Island Antarctic Science 23(1), 27?33 (2011) MELLO, F.F.C.; CERRI, C.E.P.; BERNOUX, M.; VOLKOFF, B. & CERRI, C.C. Potential of soil carbon sequestration for the Brazilian Atlantic Region. In: LAL, R.; CERRI, C.C.; BERNOUX, M.; ETCHEVERS, J. & CERRI, C.E.P. Carbon sequestration in soils of Latin America. New York, Haworth, 2006. p.349-368. MICHAELSON, G. J; DAI, X. Y.; PING, C. L. Organic Matter and Bioactivity in Cryosols of Arctic Alaska. In: KIMBLE, J. M. (ed). Cryosols, Permafrost-affected soils. Berlin: Srpringer-Verlag, p.463-479, 2004. MICHEL, R.F.; SHAEFER, C.E.G.R.; DIAS, L.E.; SIMAS, F.N.B.; DE MELO BENITES, V.; DE S? MENDON?A, E. Ornithogenic Gelisols (Cryosols) from Maritime Antarctica. Soil Science Society American Journal 70: 1370?1376 (2006). 92 MICHEL, R.F.M. Solos criog?nicos e ornitog?nicos da ?rea de entorno da Ponta Llano, Ant?rtica mar?tima. M.S., Universidade Federal de Vi?osa, Novembro 2005. MYRCHA, A.; TATUR, A. Ecological role of the current and abandoned penguin rookeries in the land environment of the maritime Antarctic. Polish Polar Research, 12:1 3-24, 1991. MOREIRA, A.; MALAVOLTA, E. Din?mica da mat?ria org?nica e da biomassa microbiana em solo submetido a diferentes sistemas de manejo na Amaz?nia Ocidental. Pesq. agropec. bras., Bras?lia, v.39, n.11, p.1103-1110, nov. 2004. NEVES, M. C. P.; GUERRA, J. G. M.; CARVALHO, S. R.; RIBEIRO, R. L. D.; ALMEIDA, D. L. de. Sistema integrado de produ??o agroecol?gica ou fazendinha agroecol?gica do km 47. In.: AQUINO, A. & ASSIS, R. L. (org) Agroecologia: princ?pios e t?cnica para uma agricultura org?nica sustent?vel. Bras?lia, EMBRAPA- Informa??o tecnol?gica. 2005. 147-172 p. OCIO, J. A.; BROOKES, P. C. An evaluation of methods for measuring the microbial biomass in soils following recent additions of wheat straw and characterization of the biomass that develops. Soil Biology and Biochemistry, v.22, p.685-694, 1990. OECHEL, W. C.; BILLINGS, W. D. Effects of global change on the Carbon balance of Arctic plants and ecosystems. In: CHAPIN III, F. S.; JEFFERIES, R. L.; REYNOLDS, J. F.; SHAVER, G. R.; SVOBODA, J. (eds). Arctic Ecosystems in a Changing Climate. Academic Press, p. 139?168, 1992. OLIVEIRA, L. A. Phosphorus related to plant growth and plant-microorganism associations in Amazonian soils. In: Anais de Workshop ?Phosphorus Cycles In Terrestrial and aqutic Ecosystems: Regional Worshop 3: South and Central Am?rica?, Caracas, Venezuela. Phosphorus Cycles Scientific Advisory Committee. P.186-195 (1991). ORCHARD, V.A. & CORDEROY, D.M. Influence of environmental factors on the decomposition of penguin guano in Antarctica. Polar Biology, 1, 199-204 (1983). OSTERKAMP, T. E.; ROMANOVSKY, V. E. Evidence for warming and thawing of discontinuous permafrost in Alaska. Permafrost Periglacial Process. 10, 17?37 (1999). PARK, J.H., DAY, T.A., STRAUSS, S. & RUHLAND, C.T. Biogeochemical pools and fluxes of carbon and nitrogen in a maritime tundra near penguin colonies along the Antarctic Peninsula. Polar Biology, 30, 199?207 (2007). PARKINSON, D.; COLEMAN, D. C. Methods for assessing soil microbial populations, activity and biomass microbial communities, activity and biomass. Agric. Ecosyst. Environm., 34:3-33, 1991. PARNIKOZA, I.YU.; INOZEMTSEVA, D.M.; TYSCHENKO, O.V.; MUSTAFA, O.; KOZERETSKA, I.A. Antarctic herb tundra colonization zones in the context of ecological gradient of glacial retreat. Ukr. Botan. Journ., 2008, vol. 65, N? 4. 93 PAUL, E. A.; VORONEY, R. P. Nutrient and energy flows through soil microbial biomass, in Ellwood, D. C., et al. (eds) Contemporary Microbial Ecology, London, Academic Press, 215-237 (1980). PAUL, E.A.; CLARK, F.E. Soil Microbiology and Biochemistry. San Diego, CA, Academic Press, 1989. 275p. PAUSTIAN, K.; SIX, J.; ELLIOTT, E.T. & HUNT, H.W. Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry, 48:147-163, 2000. PIETR, S. J.; TATUR, A.; MYRCHA A. Mineralization of penguin excrements at Admiralty Bay region (King George Island, South Shetland Islands, Antarctic) ? Polish Polar Research., 4: 97?112, 1983. PINHEIRO, E. F. M., PEREIRA, M. G., ANJOS, L. H. C. Aggregation distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil. Soil & Tillage Research, 77: 79-84, 2004. PFENNING, L., B. DE P. EDUARDO & CERRI, C.C. Os M?todos de Fumiga??o-Incuba??o e Fumiga??o-Extra??o na Estimativa da Biomassa Microbiana de Solos da Amaz?nia. Rev. Bras. Ci. Solo 16: 31-37, 1992. RAKUSA-SUSZCZEWSKI, S.; MIETUS, M.; PIASECKI, J. Weather and climate. In: RAKUSA-SUSZCZEWSKI, S. (ed.) The maritime Antarctic coastal ecosystem of Admiralty Bay. Warsaw, Polskiej Akademii Nauk, p.19?25 (1993). ROSCOE, R. & MACHADO, P. L. O. A. Fracionamento f?sico do solo em estudos da material org?nica. Publica??es Embrapa Solos e Embrapa Agropecu?ria Oeste, 2002. ROSER, D. J.; SEPPELT, R. D.; ASHBOLT, N. Microbiology of ornithogenic soils from the Windmill islands, budd coast, continental Antarctica: microbial biomass distribution. Soil Biology & Biochemistry 25 (1993) 165-175. RUIVO, M. L. P.; AMARAL, I. G.; GUEDES, A. L. S; RIBEIRO, E. L. C. Os solos de uma toposseq??ncia na Ilha de Algodoal/Maiandeua, nordeste do estado do Par?, Brasil: composi??o qu?mica e produ??o de mat?ria org?nica. Acta Amaz?n., v. 32, n. 2, p. 257-266, 2002. SAMPAIO, D. B.; ARA?JO, A. S. F.; SANTOS, V. B. Avalia??o de indicadores biol?gicos de qualidade do solo sob sistemas de cultivo convencional e org?nico de frutas. Ci?ncia e Agrotecnologia, v. 32, n. 2, p. 353-359, 2008. SANCHEZ, P.A.; BANDY, D.E.; VILLACHICA, J.H.; NICHOLAIDES, J.J. Amazon basin soils: Management for continuous crop production. Science, v.216, p.821-827, 1982. SANTANA, R.C. Predi??o de biomassa e aloca??o de nutrientes em povoamentos de eucalipto no Brasil. Vi?osa, Universidade Federal de Vi?osa, 2000. 71p. (Tese de Doutorado). SANTANA, R.M. Mapeamento de geounidades do meio f?sico e bi?tico em ?rea da Ant?rtica Mar?tima. Tese (Doutorado), Universidade Federal de Vi?osa, novembro de 2006. 94 SANTOS, T.E.B., NAKAYAMA, F.T., ARF, O., CASSIOLATO, A.M.R. Vari?veis microbiol?gicas e produtividade do arroz sob diferentes manejos de sojo e ?gua. Acta Scientiarum: Agronomy 29, 355?366 (2007). SCHAEFER, C.E.G.R.; SIMAS, F.N.B.; GILKES, R.J. ; COSTA, L.M. da; ALBUQUERQUE, M.A. Micromorphology and Microchemistry of Selected Cryosols from Maritime Antarctica. Geoderma (Amsterdam), v. 144, p. 104-115, 2008. SCHARPENSEEL, H.W. Preface to workshop ?Management of carbon in tropical soils under global change: Science, practice and policy. Geoderma, 79:1-8, 1997. SERREZE, M. C. et al. Observational evidence of recent change in the northern high-latitude environment. Clim. Change 46, 159?207 (2000). SETZER, A.W.; ROM?O, M.O.; FRANCELINO, M.R.; SCHAEFER, C.E.R.G.; COSTA, L.M. & BREMER, U.F. Regime clim?tico na Ba?a do Almirantado: rela??es com o ecossistema terrestre. In: SCHAEFER C.E.G.R., FRANCELINO, M.R., SIMAS. F.N.B. & ALBUQUERQUE FILHO, M.R. Ecossistemas Terrestres e Solos da Ant?rtica Mar?tima. 2004. 192p. SILVA, E. E.; AZEVEDO, P. H. S.; DE-POLLI, H. Determina??o da respira??o basal (RBS) e quociente metab?lico do solo (qCO2). Serop?dica: Embrapa Agrobiologia, 2007c (Comunicado T?cnico 99). SILVA, E. E.; AZEVEDO, P. H. S.; DE-POLLI, H. Determina??o do carbono da biomassa microbiana do solo. Serop?dica: Embrapa Agrobiologia, 2007b (Comunicado T?cnico 98). SILVA, E. E.; AZEVEDO, P. H. S.; DE-POLLI, H. Determina??o do nitrog?nio da biomassa microbiana do solo. Serop?dica: Embrapa Agrobiologia, 2007a (Comunicado T?cnico 96). SILVA, J. E.; RESCK, D. V. S. Mat?ria org?nica do solo. In: Vargas, M. T.; Hungria, M. G. (Ed.). Biologia dos solos dos cerrados. Planaltina: EMBRAPA-CPAC, 1997. P. 465-524. SILVA, M.B. da; KLIEMANN, H.J.; SILVEIRA, P.M.; LANNA, A.C. Atributos biol?gicos do solo sob infl u?ncia da cobertura vegetal e do sistema de manejo. Pesquisa Agropecu?ria Brasileira, v.42, p.1755-1761, 2007. SIMAS, F. N. B.; SCHAEFER, C. E. G. R.; ALBUQUERQUE FILHO, M. R.; MICHEL, R. M.; DIAS, L. E.; JR. BORGES, M.; PRATES, L. Atributos Qu?micos de Criossolos Ornitog?nicos da Ba?a do Almirantado, Ant?rtica, Vi?osa, 2004. 41-46p. SIMAS, F.N.B., SCHAEFER, C.E.G.R.,MENDONC?A, E.S., SILVA, I.R., SANTANA, R.M.; RIBEIRO, A.S.S. Organic carbon stocks in permafrost-affected soils from Admiralty Bay, Antarctica. In COOPER, A.K. & RAYMOND, C.R., Eds. Antarctica: a keystone in a changing world ? Online Proceedings of the 10th ISAES X. 2007. SIMAS, F.N.B.; SCHAEFER, C.E.G.R.; ALBUQUERQUE FILHO, M.R. DE; FRANCELINO, M.R.A.; FERNANDES FILHO, E.I.; GILKES, R.J.; COSTA, L.M. da. Genesis, Properties and Classification of Cryosols from Admiralty Bay, Maritime Antarctica. Geoderma (Amsterdam), v. 144, p. 116-122, 2008. 95 SIQUEIRA, J.O.; FRANCO, A.A. Biotecnologia do solo: Fundamentos e Perspectivas. Brasilia: MEC/ABEAS, 236p:il. (1988). SKJEMSTAD, J.; DALAL, R.bC. Spectroscopic and chemical differences in organic matter of two Vertissols subjected to long periods of cultivation. Australian Journal of Soil Research, Melbourne, v. 25, p. 323-335, 1987. SLAYMAKER, O.; KELLY, R.J. The cryosphere and global environmental change. Environmental Systems and Global Change Series. Oxford: Blackwell Publishing, 2007, 261 pp, SMITH, J. L.; PAUL, E. A. The significance of soil biomass estimates. In: BOLLAG, J. M.; STOTTZKY, G., ed. Soil Biochemistry, 6. New York: Marcel Decker, p. 357-396. 1990. SOHI, S.; MAHIEU, N.; ARAH, J.R.M.; POWLSON, D.S.P.; MADARI, B.; GAUNT, J.L. Procedure for isolating soil organic matter fractions suitable for modeling. Soil Sci. Soc. Am. J., 65:1121-1128, 2001. SOUZA, E.D. et al. Fra??es do carbono org?nico, biomassa e atividade microbiana em um Latossolo Vermelho sob Cerrado submetido a diferentes sistemas de manejos e usos do solo. Acta Sci. Agron., Maring?, v. 28, n. 3, p. 323-329, 2006. SOUZA, R.A.; HUNGRIA, M.; FRANCHINI, J.C.; CHUEIRE, L.M.O.; BARCELLOS, F.G.; CAMPO, R.J. Avalia??o qualitativa e quantitativa da microbiota do solo e da fixa??o biol?gica do nitrog?nio pela soja Pesq. agropec. bras., Bras?lia, v.43, n.1, p.71-82, jan. 2008. SPARLING, G. P.; VOJVODC-VUKOVIC, M.; SCHIPPER, L. A. Hot-water-soluble C as a simple measure of labile soil organic matter: the relationship with microbial biomass C. Soil Biol. Biochem., 30 (10-11): 1472-1479, 1998. SPARLING, G. P. Ratio of biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Aust. J. Soil Res., 30:195-207, 1992. SPARLING, G. P.; WEST, A. W. A direct extration method to estimate soil microbial C: calibration in situ using microbial respiration and 14C. Labelled cells. Soil Bio. Biochem. Oxford, v.20, n.3, p.337-343, 1988. SPEIR, T.W.; COWLING, J.C. Ornithogenic soils of the Cape Bird Ad?lie penguin rookeries, Antarctica. 1. Chemical properties. Polar Biology, 2, 199.205, 1984. SUN, L.G.; ZHU, R.B.; XIE, Z.Q.; XING, G.X. Emissions of nitrous oxide and methane from Antarctic tundra: role of penguin dropping deposition. Atmospheric Environment 36, 4977?4982, 2002. TATE, K. R.; ROSS, D. J.; FLETAM, C. W. A direct extraction method to estimate soil microbial C: effects of experimental variables and some different calibration procedures. Soil Biol. Biochem., Oxford, 20:329-335, 1988. TATUR A. 1989. Ornithogenic soils of maritime Antarctic. Polish Polar Research 10: 481?532. 96 TATUR, A.; BARCZUK, A. Ornithogenic Phosphates on King George Island, maritime Antarctic. In: W.R. Siegfried, P.R. Condy, R.M. Laws (eds). Antarctic Nutrient Cycles and Food Webs. Springer-Verlag, Berlin, Alemanha. 700 p. 1983. TATUR, A.; MYRCHA. A. Ornithogenic soils of King George Island. Polish Polar Research 5:31-60. 1984. TEDESCO, M. J.; GIANELLO, C.; BISSANI, C. A.; VLKWEISS, S. J. An?lises de solo, plantas e outros materiais. 2. ed. Porto Alegre: UFRGS, Departamento de Solos, 1995. 174 p. TER BRAAK, C.J.F.; SMILAUER, P. Canoco for Windows v. 4.5. CPRO-DLO, Wageningen, Netherlands, 2002. TSCHERKO, D.; B?LTER, M.; BEYER, L.; CHEN, J.; ELSTER, J.; KANDELER, E.; KUHN D.; BLUME, H.P. Biomass and enzyme activity of two soils transects at King George Island, Maritime Antarctic. Arctic Antarctic Alpine Research 35: 34?47 (2003). UGOLINI, F.C. 1972. Ornithogenic soils of Antarctica. Antarctic Research Series, 20, 181.193. VANCE, E. D.; BROOKES, P. C.; JENKINSON, D. S. An extration method for measuring soil microbial biomass C . Soil Biol. Biochem., Oxford, 19:703-707, 1987. VARGAS, L. K; SCHOLLES, D. Biomassa microbiana e produ??o de C-CO2 e N mineral de um Podz?lico vermelho-escuro submetido a diferentes sistemas de manejo. Revista Brasileira de Ci?ncia do Solo, Campinas, v. 24, p. 35-42, 2000. VIEIRA, L. S.; SANTOS, P. C. T. C. Amaz?nia: seus solos e outros recursos naturais. S?o Paulo: Ceres, 1987. 416p. VIEIRA, S. R.; HATFIELD, J.L.; NIELSEN, D.R.; BIGGAR, J.W. Geoestatistical Theory and Application to Variability of Some Agronomical Properties. Hilgardia, v.51, n.3,1983. WALKLEY, A.; BLACK, I. A. An examination of the degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil Science, Baltimore, v. 37, p. 29-38, 1934. WANDER, M. M.; TRAINA, B.R. Organic and conventional management effects on biologically active soil organic matter pools. Soil Science Society of America Journal, 58-1130-1139, 1994. WARDLE, D.A. A comparative assessment of factors wich influence microbial biomass carbon and nitrogen levels in soils. Biological Reviews. v.67, p. 321-358. 1992. WATSON, R. T.; RODHE, H.; OESCHGER, H.; SIEGENTEHLER, U. I. Greenhouse gases and aerosols In: HOUGHTON, J. T.; JENKINGS, G. J.; EPHRAUMS, J. J. (Ed.). Climate change. Cambridge: Cambridge University Press, 1990. 97 WBGU (Wissenschaftlicher Beirat der Bundesregierung Globale Umweltver?nderungen), 1998. Die Anrechnung biologischer Quellen und Senken im Kyoto-Protokoll: Fortschrift oder R?ckschlag f?r den globalen Umweltschutz? WGBU, Bremerhaven, 76 pp. WITT, C.; GAUNT, J. L.; GALICIA, C. C.; OTTOW, J. C. G.; NEUE, H. U. A rapid chloroformfumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biology and Fertility of Soils, v. 30, n. 5-6, p. 510-519, mar. 2000. XAVIER, F.A.S.; MAIA, S.M.F.; OLIVEIRA, T.S.; MENDON?A, E.S. Biomassa microbiana e mat?ria org?nica leve em solos sob |
Page generated in 0.0209 seconds