La pathogenèse de l’encéphalite herpétique (HSE) n’est pas totalement connue, mais la réplication du virus engendre une encéphalite aiguë nécrosante du lobe temporal/frontal et une inflammation cérébrale menant à l’infiltration des cellules immunitaires périphériques au sein du système nerveux central. Bien que la majorité des dommages cérébraux engendrés seraient causés par la réplication virale, de plus en de plus de données indiquent une composante immunitaire dans la pathogenèse de l’HSE. La réponse immunitaire innée constitue la première ligne de défense limitant la propagation virale. Nous savons que la réponse immunitaire est engendrée à la suite de la reconnaissance du VHS-1, notamment par les « Toll-like receptors » (TLRs). De plus, la synthèse d’interféron (IFN) de type I est primordiale dans la réponse antivirale. En effet, des études montrent qu’une déficience d’un composant impliqué dans les voies de signalisation menant à la production d’IFNs de type I est délétère chez la souris et chez l’humain au cours de l’HSE. Par ailleurs, la migration des cellules immunitaires au sein du SNC prend de plus en plus d’ampleur dans l’étude de la réponse immunitaire contre cette infection. Cependant, bien que différents modèles animaux permettent l’étude de la réponse immunitaire cérébrale, la complexité de cette pathologie, du SNC et de sa réponse inflammatoire en limite encore notre compréhension. L’objectif principal de cette thèse a été de mieux comprendre la composante immunitaire de la pathogenèse de l’HSE, et plus spécifiquement, au niveau du recrutement des cellules immunitaires périphériques dans le SNC, de la participation des voies de signalisation passant par les facteurs de transcription régulateurs des IFNs (IRF) 3 et IRF7 et d’évaluer l’effet d’immunomodulateurs tels que l’artésunate et la rapamycine sur la sensibilité de différentes souches murines au cours de l’encéphalite herpétique expérimentale. Les études menées ont permis de mettre en évidence qu’une réponse immunitaire cérébrale innée efficace participe à la résistance naturelle des souris C57BL/6 en comparaison aux souris BALB/c naturellement sensibles. En effet, la charge virale dans le SNC des souris C57BL/6 infectées par le VHS-1 par voie I.N est plus faible au pic de l’infection (i. e jour 6 post-infection [p. i]) comparativement aux souris BALB/c. Ce contrôle de la charge virale est associé à une infiltration rapide (avec au jour 4 post-infection, infiltration de monocytes inflammatoires, de cellules dendritiques conventionnelles [cDCs], de cellules dendritiques plasmacytoïdes [pDCs], de cellules « natural killers » [NK], de cellules « natural killers T » [NKT]) et coordonnée (suivie d’une infiltration de lymphocyte T au jour 8 p. i). Par ailleurs, les travaux réalisés ont permis de mettre en évidence un rôle clé d’IRF3 et plus particulièrement d’IRF7 dans la réponse interféron de type I. En ce sens, les souris déficientes pour IRF3 ou IRF7 sont plus sensibles à l’infection intranasale par le VHS-1 que les souris C57BL/6 sauvages. Chez les souris déficientes pour IRF7 et dans une moindre mesure pour IRF3, la perte de contrôle de la réplication virale dans le cerveau est associée à un défaut de production d’IFN -b à un temps précoce après l’infection suivi par une surproduction des IFNs de type I. La sensibilité accrue au cours de l’HSE, aussi bien chez les souris BALB/c naturellement sensibles que chez les souris déficientes pour IRF7 ou IRF3, est combinée à une forte production de cytokines pro-inflammatoires et de chimiokines à des temps tardifs postinfection. Nous avons donc évalué l’effet de l’ajout d’immunomodulateurs au traitement antiviral : l’artésunate (ART), agissant sur les voies de signalisation passant par TLR2 et 9 et la rapamycine (RAPA), agissant sur les voies de signalisation passant par TLR3 et 9 et ainsi mis en évidence que l’ajout d’un composé immunomodulateur au traitement antiviral permettait d’améliorer la survie des souris sensibles à l’infection sans action directe sur la charge virale au niveau du cerveau, mais en diminuant significativement les taux de cytokines pro-inflammatoire et de chimiokines dans le SNC. À l’aide de ces différents modèles expérimentaux, j’ai également démontré une surexpression de cytokines pro-inflammatoires (l’IL-1 b, l’IL-6, l’IFN -g) et de chimiokine (CCL2), dont les taux sont diminués par l’ajout d’un traitement immunomodulateur à la thérapie antivirale dans un modèle murin sensible à l’HSE. Ces données apportent donc de nouvelles preuves d’une composante immunitaire dans la pathogenèse de l’encéphalite herpétique, ainsi que de nouvelles cibles thérapeutiques potentielles. / Pathogenesis of herpes simplex encephalitis is not completely understood, but viral replication results in acute necrotizing encephalitis of the temporal/frontal lobes and cerebral inflammation leading to the infiltration of the peripheral immune cells to the central nervous system (CNS). Although most brain damage is caused by viral replication, a lot of data suggest that the immune response could also contribute to the pathogenesis of HSE. The innate immune response is the first line of host defense that limits viral spread. Numerous studies showed that the immune response is induced by the recognition of HSV-1, in particular by the toll-like receptors (TLRs). Likewise, type I interferon (IFN) is essential to the antiviral response. Indeed, studies showed that impairment of a component involved in signaling pathways inducing the type I IFN synthesis is deleterious in mice and humans during HSE. For several years, a series of studies have suggested that the immune response participated in this CNS pathology resulting in a fatal course and that hyperinflammatory responses initiated by early infiltrating innate cells play a key role in the development of this pathology. In addition, the complexity of the CNS inflammatory response constitutes a challenge for our understanding of the pathogenesis of herpetic encephalitis. The main objective of this thesis was to better understand the immune response as a contributor to the pathogenesis of HSE, and more specifically, the recruitment of peripheral immune cells in the CNS, the involvement of signaling pathway mediated by the interferon regulatory transcription factors (IRF) 3 and IRF7 and the evaluation of the effects of immunomodulators such as artesunate and rapamycin on the susceptibility of different murine strains during experimental HSE An effective innate cerebral immune response contributes to the natural resistance of C57BL/6 mice compared to naturally sensitive BALB/c mice. In fact, the viral load in the CNS of C57BL/6 mice infected with HSV-1 by the I.N. route is lower at the peak of infection (day 6 post-infection (p.i)) compared to BALB/c mice. This control of the viral load is associated with rapid and coordinated infiltration of cells in the CNS (infiltration of inflammatory monocytes, conventional dendritic cells (cDCs), plasmacytoid dendritic cells (pDCs), natural killer cells (NK), natural killer cells T (NKT) on day 4 p.i) followed by T lymphocyte infiltration on day 8 p.i. Moreover, the control of viral replication is orchestrated by the activation of transcription factors IRF3 and particularly IRF7. In this regard, mice deficient for IRF3 or IRF7 are more susceptible to intranasal infection by HSV-1 than wild type C57BL/6 mice. In mice deficient for IRF7 and to a lesser extent for IRF3, the loss of control of viral replication in the brain is associated with a defect in IFN-b production at an early time after infection followed by overproduction of type I IFNs. Increased susceptibility of BALB/c mice, IRF3- or IRF7-deficient mice is associated with higher levels of pro-inflammatory cytokines and chemokines levels in the CNS compared to C57BL/6 mice at later times post-infection. We therefore evaluated the effect of the addition of immunomodulators to antiviral treatment: artesunate (ART), acting on signaling pathways mediated by TLR2 and 9 and rapamycin (RAPA), acting on signaling pathways mediated by TLR3 and 9. We show that the administration of ART or RAPA to the antiviral therapy was beneficial and improve the outcome of HSE in mice, without a direct effect on the viral load. Instead they act by decreasing significantly pro-inflammatory cytokine and chemokine levels in the CNS. Using these different experimental models, we also demonstrated overexpression of pro-inflammatory cytokines (IL-1 b, IL-6, IFN -g) and chemokine (CC2) during experimental HSE. In this regard, adding of immunomodulatory compound to antiviral therapy allowed to decrease levels of these inflammatory proteins. In conclusion, these data provide new evidence for the contribution of the immune response in the pathogenesis of herpetic encephalitis, as well as the development of potential new therapeutic targets.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/38088 |
Date | 16 March 2024 |
Creators | Canivet, Coraline |
Contributors | Boivin, Guy |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xxiv, 185 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0032 seconds