Cette thèse présente une modélisation et commande passive des bioréacteurs continus isothermes. Une attention spéciale est portée à la recherche de fonctions de Lyapunov ayant un sens physique ou reliées à la structure du modèle. On montre que l’énergie libre de Gibbs est une fonction Hamiltonienne appropriée pour les réacteurs enzymatiques. Un modèle basé sur une représentation énergétique est proposé qui peut être considéré comme un système quasi-Port-Hamiltonien. Le modèle se décline en une représentation dans l’espace des concentrations (SPH) et une autre dans l’espace réactionnel (RPH). La commande basée sur la passivité par interconnexion et assignation d'amortissement est obtenue en donnant une forme appropriée à l’énergie désirée, que ce soient pour des modèles SPH ou RPH. Les résultats sont validés par simulation sur un modèle d’hydrolyse enzymatique de la cellulose. On propose ensuite un modèle passif d’un ensemble de réactions microbiennes dans un réacteur ouvert, avec un nouveau type de fonctions de stockage. Grâce à un changement de variables adéquat, le nombre d’´équations du système est réduit et les propriétés de passivité sont directement démontrées. A partir de ce modèle, il est possible de déterminer une commande passive de manière systématique. Les fonctions de Lyapunov candidates peuvent présenter une certaine analogie avec l’énergie libre de Gibbs introduite dans la représentation quasi Port-Hamiltonienne des réactions enzymatiques. Par la suite, une loi de commande adaptative basée sur le modèle présenté est proposée. La validation a été effectuée à partir de simulations d’une réaction élémentaire, puis d’une digestion anaérobie. Les résultats montrent la pertinence des nouvelles lois de commandes passive et adaptative. / This thesis proposes a passivity based formulation and control of a well-mixed CSTR model for a set of chemical and biochemical reactions taking place at constant pressure and temperature. Special care has been taken to not look loosely on the physical coherence of a system by using meaningful energy functions as Lyapunov functions and using the structure of the model while performing the control. It is made clear that Gibbs free energy is an apt Hamiltonian function for such cases. The Bond Graph models related to Port-Hamiltonian formulation for both types of reactions are given in order to show its ability of pictorial representation and intuitive solution. An energy based model of such systems is proposed which can be said as quasi Port-Hamiltonian system (PHS) based on physical grounds. The model is taking care of the concentration space and reaction space of a chemical reaction. Stoichiometric and Reaction interconnection and damping assignment passivity based controllers (IDA-PBC) are derived from the proposed Stoichiometric and Reaction energy based models respectively by physically giving the energy function a desired form. Real application of enzymatic hydrolysis of cellulose in continuous reactor is simulated.Then, a passivity based model of a general set of microbial reactions in open reactors with new Lyapunov functions is derived. A useful change of coordinates is done which simplifies the number of equations to be taken care of and shows directly the passivity of the system. The passivity based control is obtained from systematic controller design techniques. The Lyapunov functions can be said to be in close proximity with the Gibbs free energy function used in Port-Hamiltonian model of enzymatic reactions and are far from the traditional non-physical quadratic functions. A general method of generating an adaptive passivity based control law with the new model which is more physical and maintains the structure of the model has been generated. Application and validation of the model through simulations is done on single and multiple reaction examples. To explore the pseudo-energetic point of view towards modeling and control of microbial reactions in open reactors with parametric uncertainty, different candidate energy functions are being tested and an adaptive controller is designed to cope with uncertainties on the specific growth rate.
Identifer | oai:union.ndltd.org:theses.fr/2015LIL10068 |
Date | 22 September 2015 |
Creators | Makkar, Mohit |
Contributors | Lille 1, Dieulot, Jean-Yves |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0113 seconds