La fibrillation auriculaire (FA) est l’arythmie cardiaque soutenue la plus fréquente et elle peut mener à des conséquences médicales sévères, comme les accidents vasculaires cérébraux (AVC). Des remodelages électrophysiologiques, c’est-à-dire dans les courants ioniques, ainsi que des remodelages structurels, comme l’hypertrophie et la fibrose, ont été associés avec la fibrillation auriculaire. Ces remodelages peuvent affecter la conduction auriculaire, augmentant les risques de fibrillation auriculaire.
Plusieurs facteurs de risque ont été associés avec la fibrillation auriculaire, parmi ceux-ci, on compte les niveaux élevés d’angiotensine II. L’angiotensine II est l’effecteur principal du système rénine-angiotensine (SRA) et ses effets néfastes sont médiés par le récepteur de type I à l’angiotensine II (AT1R). La suractivation du SRA, par l’action d’AT1R peut entraîner, entre autres, l’hypertension, l’insuffisance cardiaque, ainsi que des arythmies, comme la fibrillation auriculaire. Cependant, les mécanismes par lesquelles l’angiotensine II affectent directement le cœur et prédispose à la fibrillation auriculaire sont encore peu connus.
L’objectif de ce projet de recherche consiste à étudier les remodelages électriques et structurels chez des souris transgéniques surexprimant le récepteur AT1 de manière cardiomyocyte-spécifique. Ces souris, nommées souris AT1R, permettent de voir l’effet de la suractivation du SRA uniquement au niveau cardiaque, sans modification hémodynamique. Les souris AT1R ont été utilisés à deux âges afin de distinguer les effets directs d’AT1R sur l’électrophysiologie auriculaire (50 jours), de ceux induit par la présence de remodelage structurel (6 mois). Ceci a été validé par la quantification de la fibrose auriculaire par marquage histologique de type rouge Sirius. L’utilisation des deux groupes est importante puisque la fibrose est connue pour affecter l’électrophysiologie cardiaque et altérer la conduction auriculaire.
L’hypothèse de ce projet de recherche est que la surexpression d’AT1R induit un remodelage électrique auriculaire qui altère la conduction et mène au développement de fibrillation auriculaire. La présence de remodelage structurel amplifierait ces effets néfastes, favorisant davantage la survenue de fibrillation auriculaire.
Les données obtenues montrent une diminution du courant sodique d’environ 60% comparativement aux souris contrôles (CTL) dès l’âge de 50 jours. Cette diminution est associée avec une augmentation de l’expression protéique sarcolemmale de la PKCα, une protéine kinase capable de phosphoryler le canal Nav1.5 menant à la réduction du courant sodique. L’expression génique du canal Nav1.5 (encodé par le gène Scn5a) n’était pas modifiée à 50 jours, suggérant une absence de régulation transcriptionnel pour ce canal. De plus, une diminution de l’expression génique des connexines 40 et 43 a été observée chez les souris AT1R dès 50 jours. Une prolongation de la durée de l’onde P, qui correspond au temps nécessaire à la dépolarisation des oreillettes, est observée à 50 jours sur les électrocardiogrammes des souris AT1R par rapport aux CTL. À 6 mois, la présence de remodelage structurel n’aggrave pas les remodelages au niveau du courant sodique et des connexines, mais prolonge encore davantage la durée de l’onde P. La susceptibilité à la fibrillation auriculaire est légèrement augmentée à 50 jours et nettement plus à 6 mois.
En conclusion, la surexpression d’AT1R induit directement des remodelages électriques qui affectent la conduction dans l’oreillette, et ce indépendamment de la présence de remodelage structurel. Le remodelage structurel affecte la conduction auriculaire, mais n’amplifie pas les altérations du courant sodique et des connexines observées dans ce projet. Ainsi, ce projet apporte des connaissances sur les mécanismes par lesquels l’angiotensine II peut altérer la conduction auriculaire et mener à la fibrillation auriculaire, indépendamment des effets hémodynamiques. / Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and is associated with an increased risk of strokes and other morbidities. Atrial fibrillation has been associated with ionic currents remodeling, as well as structural remodeling, such as fibrosis and hypertrophy. These atrial remodeling can slow down atrial conduction velocity increasing the risk of atrial fibrillation.
Several risk factors have been associated with atrial fibrillation and elevated levels of angiotensin II are one of them. Angiotensin II is the primary effector of the renin-angiotensin system (RAS). Angiotensin II type 1 receptors (AT1R) are responsible for the several pathologies induced by RAS overactivity, such as hypertension, heart failure and atrial fibrillation. However, the direct effects of angiotensin II on the heart and its role in atrial fibrillation pathophysiology remain largely unexplored.
The objective of this research project is to study electrical and structural remodeling in transgenic mice overexpressing AT1R specifically in cardiomyocytes. These mice, identified as AT1R mice, do not have hemodynamic changes and are therefore suitable for studying the direct effect of RAS overactivation on the heart. Two age groups were used to distinguish the direct effects of AT1R on atrial electrophysiology (50-day-old mice) from those induced by structural remodeling (6-month-old mice). The presence of atrial fibrosis solely in 6 months old AT1R mice was confirmed using Picrosirius Red histological method. Characterizing electrical remodeling with and without structural remodeling is important since fibrosis is known to modulate cardiac electrophysiology and impair atrial conduction.
The hypothesis of this project is that AT1R overexpression induces atrial electrical remodeling which alters conduction, leading to atrial fibrillation. Structural remodeling is expected to worsen conduction defects, further increasing the risk of atrial fibrillation.
In this project, we measured an approximately 60% decrease in sodium current in 50 days old AT1R mice compared to controls (CTL). This change in sodium current was associated with an increase of PKCα protein expression in the sarcolemmal fraction. PKCα is a protein kinase able to phosphorylate Nav1.5 channels, resulting in a decrease in its function. Scn5a gene expression, encoding for Nav1.5 channels, was not changed at 50 days, suggesting an absence of transcriptional regulation of the sodium current. Moreover, a decrease in connexins 40 and 43 gene expression was observed in AT1R mice from the age of 50 days. Accordingly, a prolongation in P wave duration, which corresponds to atrial depolarization, is observed at 50 days in AT1R mice compared to CTL. At 6 months, structural remodeling did not worsen the reduction in sodium current or connexins induced by AT1R overexpression but was associated with a further prolongation of P wave duration. Susceptibility to AF was slightly increased in 50 days old AT1R mice and even more at 6 months.
In conclusion, AT1R overexpression directly induces electrical remodeling, which slows down atrial conduction, independently of structural remodeling. Structural remodeling further alters atrial conduction without changes in sodium current or connexins expression. This project provides knowledge on mechanisms by which angiotensin II alters atrial conduction and leads to atrial fibrillation, even in absence of angiotensin II-induced hemodynamic changes.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/26214 |
Date | 06 1900 |
Creators | Demers, Julie |
Contributors | Fiset, Céline |
Source Sets | Université de Montréal |
Language | fra |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0072 seconds