Return to search

Etude du rayonnement d'un écoulement hypersonique à basse densité / Radiation in low density hypervelocity flows

Cette thèse étudie le transfert de chaleur par rayonnement observé dans les conditions d'écoulement raréfié, en régime hypersonique qui seraient rencontrés au cours d'une mission d'aérocapture dans l'atmosphère de Titan. Des estimations précises du rayonnement hors-équilibre dans des écoulements à grande vitesse tels que ceux autour des corps de re-entrée, sont indispensables pour la conception de systèmes de protection thermique plus efficace. Parce que la masse du système de protection thermique est une fraction importante de la masse totale du véhicule, il ya un grand intérêt dans la conception de systèmes plus légers et plus efficaces. Les expériences en vol sont coûteuses et contraignantes, c'est pourquoi l'essai en laboratoire dans des installations capables de produire des écoulements hypersoniques est nécessaire. Malheureusement, les échelles de longueur généralement impliquées dans les expériences en vol sont trop grandes pour être testées dans des installations expérimentales et donc des modèles réduits de véhicules 'aeroshells' sont généralement testés. Les tubes d'expansion de l'université de Queensland - X1, X2 et X3 - ont été largement utilisés pour la modélisation à l'échelle réduite des écoulements hypersoniques (Morgan 2001). Pour les installations d'essais au sol telle que la soufflerie X2, une mise à l'échelle binaire est utilisée pour tester des modèles à échelle réduite de véhicules de vol, ce qui constitue le paramètre le plus important à respecter afin de reproduire un vol à haute vitesse. La mise à l'échelle binaire, appelé aussi 'mise à l'échelle 'ƒÏL', exige que le produit de la densité et de la longueur caractéristique du véhicule soit conservé entre le vol et les conditions expérimentales. Toutefois, il a été montré par Capra (2007) que le transfert de chaleur par rayonnement ne suit pas cette même loi de mise à l'échelle, et la similitude n'est pas crée pour les cas en vol où le transfert de chaleur par rayonnement et par convection sont fortement couplés. Cela peut entraîner d'importantes erreurs dans les estimations des propriétés d'écoulement associée et l'estimation du transfert de chaleur due au rayonnement. L'installation X2 a été modifiée en 2006 pour permettre l'expérimentation à basse pression en mode tube à choc non-réfléchi. L'utilisation d'un tube à choc non-réfléchi a permis la mesure du transfert de chaleur par rayonnement à la densité réelle en vol et supprimé les problèmes d'échelle liés à la mesure des rayonnements sur les véhicules en modèle réduit, au moins pour une partie de l'écoulement. Des mesures ont été effectuées dans la région immédiatement située derrière le choc et le long de la ligne médiane de l'écoulement de base, où le choc reste plan. Les écoulements externes, tels que ceux entourant une capsule de re-enntrée, n'ont pas été reproduits. La limite de basse pression d'exploitation était d'environ 10 Pa, limitée par la croissance de la couche limite sur les murs. / This thesis investigates the radiative heat transfer encountered in rarefied, hypervelocity flow conditions such as would be experienced during an aerocapture mission to Titan. Accurate estimates of the nonequilibrium radiation involved in high speed operations such as reentry are essential in order to design these thermal protection systems more efficiently. Because the mass of the thermal protection system is a large fraction of the overall vehicle mass, there is great interest in designing lighter and more efficient systems. Flight experiments are expensive and restrictive, hence laboratory testing is needed in facilities that are capable of producing hypervelocity flow. Unfortunately, as the size of a typical flight vehicle is too large to reasonably test in experimental facilities, subscale models of the aeroshell vehicles are generally tested. The University of Queensland's expansion tube facilities - X1, X2 and X3 - have been widely used for subscale modelling of hypersonic flowfields (Morgan 2001). Ground testing facilities such as the X2 facility take advantage of binary scaling to test small scale models of flight vehicles, which is the most important parameter to match in order to reproduce high speed flight. Binary scaling, also called 'ƒÏL' scaling, requires that the multiplication of density and the characteristic length of the vehicle be balanced between flight and experimental conditions. However, it was shown by Capra (2007) that radiative heat transfer does not follow this same scaling factor, and true similarity with flight is not created for flows where the radiative and convective heat transfer are strongly coupled. This can result in significant errors in the estimates of the associated flow properties and the estimation of the heat transfer due to radiation. The X2 facility was modified in 2006 to allow experimentation at low pressures in nonreflected shock tube mode. Nonreflected shock tube operation allowed the taking of true-flight density measurements of the radiative heat transfer and removed the scaling problems involved in radiation measurements for model vehicles, at least for part of the flowfield. Measurements were made in the region immediately behind the shock along the centreline of the core flow, where the shock remained planar. External flow fields, such as those surrounding a reentry capsule, were not reproduced. The low density operating limit was approximately 10 Pa, limited by boundary layer growth on the walls.

Identiferoai:union.ndltd.org:theses.fr/2011ECAP0044
Date20 October 2011
CreatorsJacobs, Carolyn
ContributorsChâtenay-Malabry, Ecole centrale de Paris, University of Queensland, Laux, Christophe, Morgan, Richard
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0062 seconds