Return to search

Exploring the design space for a hybrid-electric regional aircraft with multidisciplinary design optimisation methods / Exploration de l'espace de conception d'un avion régional hybride par optimisation multidisciplinaire

Envisagée à partir des 15 à 30 années à venir dans l'industrie aéronautique, la propulsion hybrideélectrique permet d'intégrer de nouvelles briques technologiques offrant des degrés de libertésupplémentaires pour améliorer les performances des aéronefs, limiter l'utilisation de ressourcesfossiles et réduire l’impact environnemental des avions. Aujourd'hui, la technologie hybrideélectrique est principalement appliquée aux transports terrestres, aux voitures, aux bus et auxtrains, mais aussi aux navires. La faisabilité pour le transport aérien doit encore être établie etl'amélioration des performances des aéronefs reste à démontrer. Cette thèse vise à évaluer lesgains énergétiques apportés par l'hybridation électrique d'un avion régional de 70 places. Toutd'abord, les opportunités d'économie d'énergie sont identifiées à partir de l'analyse desrendements propulsifs et aérodynamiques d'un avion bi-turbopropulsé conventionnel. Les gainspotentiels provenant de la variation de la taille des moteurs principaux et de nouvelles gestions depuissance par l'utilisation de batteries sont étudiés. De plus, les possibles améliorationsaérodynamiques émanant de nouveaux positionnements des hélices sont considérées. Pourchaque sujet, des analyses simplifiées fournissent une estimation d'économie d'énergie. Cesrésultats sont ensuite utilisés pour sélectionner quatre systèmes propulsifs électrifiés qui sontétudiés plus en détail dans la thèse: un hybride parallèle, un turboélectrique avec propulsiondistribuée, un turboélectrique partiel à hélices hypersustentatrices, et un tout-électrique.L'évaluation des avions hybrides électriques sélectionnés est d'autant plus difficile que ledimensionnement des différentes composants, les stratégies de gestion d'énergie et les profils demission que l'on peut imaginer sont nombreux et variés. En outre, le processus global deconception de l'avion et les outils d'évaluation doivent être adaptés en conséquence. L'outilinterne de conception par optimisation multidisciplinaire d'Airbus nommé XMDO, qui inclut laplupart des modifications requises, est finalement sélectionné et développé au cours de la thèse.Par exemple, de nouveaux modèles paramétriques de composants (voilure soufflée, moteurélectrique, turbine à gaz, hélice, etc...) sont créés, une formulation générique pour résoudrel'équilibre du système de propulsion est mise en place, et les modèles de simulation de décollageet d'atterrissage sont améliorés. Afin d'évaluer l'efficacité énergétique des avions hybridesélectriques, un avion de référence équipé d'un système propulsif conventionnel est d'abordoptimisé avec XMDO. Différents algorithmes d'optimisation sont testés, et la consistance de lanouvelle méthode de conception est vérifiée. Par la suite, les configurations hybrides électriquessont toutes optimisées selon les mêmes exigences de conception que l'avion de référence. Pourles composants électriques, deux niveaux de technologie sont définis selon la date d'entrée enservice de l'aéronef. Les résultats d'optimisation pour le turbo-électrique et le turbo-électriquepartiel sont utilisés pour mieux appréhender les gains aérodynamiques potentiels identifiés enpremière partie de thèse. Les optimisations pour l'hybride parallèle, comprenant différentsscénarios de recharge batterie, mettent en évidence les meilleures stratégies de gestion d'énergielorsque des batteries sont utilisées comme sources d'énergie secondaire. Tous les résultats sontfinalement comparés à la référence en termes de consommations de carburant et d'énergie, pourles deux niveaux de technologie électrique. La dernière partie de la thèse se concentre sur l'aviontout électrique. Elle vise à identifier l'énergie spécifique minimale requise pour les batteries enfonction de la distance maximale à parcourir. Une étude de sensibilité est également réalisée enfonction de la date d'entrée en service pour les autres composants électriques / Envisioned in the next 15 to 30 years in the aviation industry, hybrid-electric propulsion offers theopportunity to integrate new technology bricks providing additional degrees of freedom to improveoverall aircraft performance, limit the use of non-renewable fossil resources and reduce the aircraftenvironmental footprint. Today, hybrid-electric technology has mainly been applied to groundbased transports, cars, buses and trains, but also ships. The feasibility in the air industry has to beestablished and the improvement in aircraft performance has still to be demonstrated. This thesisaims to evaluate the energy savings enabled by electric power in the case of a 70-seat regionalaircraft. First, energy saving opportunities are identified from the analysis of the propulsion andaerodynamic efficiencies of a conventional twin turboprop aircraft. The potential benefits comingfrom the variation of the size of prime movers and the new power managements with the use ofbatteries are studied. Also, possible aerodynamic improvements enabled by new propellerintegrations are considered. For each topic, simplified analyses provide estimated potential ofenergy saving. These results are then used to select four electrified propulsion systems that arestudied in more detail in the thesis: a parallel-hybrid, a turboelectric with distributed propulsion, apartial-turboelectric with high-lift propellers and an all-electric. Evaluating the selected hybrid-electric aircraft is even more challenging that the sizing of the different components, the energymanagement strategies and the mission profiles one can imagine are many and varied. Inaddition, the overall aircraft design process and the evaluation tools need to be adaptedaccordingly. The Airbus in-house Multidisciplinary Design Optimisation platform named XMDO,which includes most of the required modifications, is eventually selected and further developedduring the thesis. For examples, new parametric component models (blown wing, electrical motor,gas turbine, propeller, etc…) are created, a generic formulation for solving the propulsion systemequilibrium is implemented, and simulation models for take-off and landing are improved. In orderto evaluate the energy efficiency of the hybrid-electric aircraft, a reference aircraft equipped with aconventional propulsion system is first optimised with XMDO. Different optimisation algorithms aretested, and the consistency of the new design method is checked. Then, all the hybrid-electricconfigurations are optimised under the same aircraft design requirements as the reference. Forthe electrical components, two levels of technology are defined regarding the service entry date ofthe aircraft. The optimisation results for the turboelectric and the partial-turboelectric are used tobetter understand the potential aerodynamic improvements identified in the first part of the thesis.Optimisations for the parallel-hybrid, including different battery recharge scenarios, highlight thebest energy management strategies when batteries are used as secondary energy sources. All theresults are finally compared to the reference in terms of fuel and energy efficiencies, for the twoelectrical technology levels. The last part of the thesis focuses on the all-electric aircraft, and aimsat identifying the minimum specific energy required for batteries as a function of the aircraft designrange. A trade study is also carried-out in accordance with the service entry date for the otherelectrical components

Identiferoai:union.ndltd.org:theses.fr/2018INPT0092
Date22 October 2018
CreatorsThauvin, Jérôme
ContributorsToulouse, INPT, Roboam, Xavier, Budinger, Marc
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds